
QAS Pro
API

Disclaimer

E&OE. Information in this document is subject to change without notice. QAS Limited
reserves the right to revise its products as it sees fit. This document describes the
state of this product at the time of its publication, and may not reflect the product at all
times in the future.

Use of this Product is subject to the terms of the QAS evaluation licence in the case of
an evaluation, and to the QAS Licence Terms & Conditions in the case of full
commercial use of the product, and will also be subject to Data Provider terms. By
downloading, installing or using this product, you agree to comply with all the
relevant terms. Please refer to these terms for all permitted uses and applicable
restrictions on the use of the product.

The liability of QAS Limited with respect to the documentation and the licensed
programs referred, are set out in that software licence agreement. QAS Limited
accepts no liability whatsoever for any use of the documentation or the licensed
programs by any person other than a permitted user under the software licence
agreement.

Copyright

All copyright and other rights in this manual and the licensed programs described in
this manual are the property of QAS Limited, save for copyright in data in respect of
which the copyright belongs to the relevant data provider. For details of data
ownership, see the Data Guides located on the Data installation CDs.

No part of this manual may be copied, reproduced, translated or reduced to any
electronic medium or machine readable form without the written consent of QAS
Limited.

Microsoft, Word and Windows are trademarks of Microsoft Corporation.

© QAS Ltd. 1999 - 2011

For resolutions to common issues, answers to Frequently Asked Questions, and
hints and tips for using our products, visit the Experian QAS Support Site at:
http://support.qas.com

To contact Experian QAS Technical Support, use the details provided below for
your region.

Experian QAS Support Website:
support.qas.com

Experian QAS Global Website:
www.qas.com

UK
QAS Ltd
George West House
2-3 Clapham Common North Side
LONDON
SW4 0QL
UNITED KINGDOM

France
Experian QAS
Tour Europlaza
20 avenue André Prothin
92927 Paris la Défense cedex
FRANCE

Tel: +44 (0) 20 7498 7777
Fax: +44 (0) 20 7498 0303

Tel: +33 (0) 1 70 39 45 55
Fax: +33 (0) 1 70 39 43 21

Technical Support
Tel: +44 (0) 20 7498 7788
E-mail: uk.support@qas.com

Technical Support
Tel: +33 (0) 1 70 39 43 43
E-mail: fr.support@qas.com

USA and Canada
QAS
125 Summer St Ste 1910
Boston MA 02110-1615
USA

Australia
QAS Pty Ltd
L 15 100 Miller Street
NORTH SYDNEY NSW 2060
AUSTRALIA

Tel: +1 888 322 6201
Fax: +1 888 882 7082

Tel: +61 (0) 2 8907 7200
Fax: +61 (0) 2 8907 7298

Technical Support
Tel: +1 888 712 3332
E-mail: us.support@qas.com

Technical Support
Tel: +61 (0) 2 8907 7272
E-mail: ap.support@qas.com

http://support.qas.com/
http://support.qas.com/
http://www.qas.com/

Singapore
QAS Ltd
1 Maritime Square
#10-33A/B HarbourFront Centre
Singapore 099253

Netherlands
Experian QAS
Kantoorgebouw 't Schip
Verheeskade 25
2521 BE DEN HAAG
THE NETHERLANDS

Tel: +65 6593 7500
Fax: +65 6593 7598

Tel: +31 (0) 70 440 4700
Fax: +31 (0) 70 440 4710

Technical Support
Tel: +61 (0) 2 8907 7272
E-mail: ap.support@qas.com

Technical Support
Tel: +44 (0) 20 7498 7788
E-mail: nl.support@qas.com

For all other countries
QAS Ltd
George West House
2-3 Clapham Common North Side
LONDON
SW4 0QL
UNITED KINGDOM
Tel: +44 (0) 20 7498 7777
Fax: +44 (0) 20 7498 0303
Technical Support
Tel: +44 (0) 20 7498 7788
E-mail: support@qas.com

Experian QAS Global Website
www.qas.com
Experian QAS Support Website
support.qas.com

Version 6.85 Revision 1
December 2011

http://www.qas.com/
http://support.qas.com/

Contents

Introduction 1
Conventions 2
Accompanying Documentation 2

Data Guide 2
API Manual 3
Getting Started Guide 3
Help Files 3
Client/Server Documentation 3
Upgrade Guide 4

Licences 5
Expiry Warnings 5
Evaluations 5
Street Level Validation 5

Installing QAS Pro API 7
System Requirements 7
Windows Installation 8
UNIX Installation 11
Installing And Updating Data 11

Windows 11
UNIX 12

Data Updates 13
Getting Started With QAS Pro API 14
Which Version Of The API Should I Use? 16

Sample Code 17
Testing Your Primary API Installation 17

Searching With A Test Harness 18
Testing Your UI API Installation 20

i

Running The Test Harness 21
A Typedown Search 22
A Single Line Search 23
A Key Search 24

Searching With QAS Pro 25
Which Search Method Should I Use? 26
Typedown Searching 26

Searching For A Residential Address 27
Searching For An Organisation Address 28
Searching For A PO Box Address 28
Typedown Troubleshooting 28

Single Line Searching 28
Wildcard Searching 29
Searching With Partial Addresses 31
Identifying Address Elements 32

Key Searching 32
Searching On A Utility Meter Number 33
Searching For A UPRN 33

Alias Matching 34
United Kingdom 34
Australia 35
New Zealand 36

Retrieving DataPlus Information 37
Retrieving Multiple DataPlus Values 37
Barcoding 40

QAS Pro User Interface 41
Menu Bar 42
Toolbar 43
Search Area 44
Results Area 45
Partial Address Bar 45
Status Bar 46
Select Button 47
Picklist of Returned Addresses 47
Picklist Symbols 49

ii

Typedown Search Results 50
Single Line Search Results 50
Selecting a Picklist Item 51
Order of Picklist Items 51
Displayed Postcodes 51

Returning An Unrecognised Address 52
Address Edit Screen 53
Setting QAS Pro Options 53

Selecting A Search Method 54
Setting The Search Options 55
Selecting A Dataset 55
Selecting An Address Layout 56

QAS Healthcoder 59
Using QAS Healthcoder 59
AddressBook 60
+<search prefix>:<data file name> 60
AddressBookData=<file location> 61

Data Types 63
Function Return Values 63
Parameters (Input) 63
Parameters (Output) 64

Calling Functions From Languages Other Than C 64
NULL Termination 64
Passing By Value Or By Reference 65
Returned Strings 65

Example Of Data Types 66

Primary API Reference 67
Pseudocode Example Of QAS Pro API 67

Main Function 67
Display Error Function 69
User Action Function 70
Display Results Function 70
Select Result Function 71
Return Address Function 71

Handling Errors 71

iii

API Instances 73
Flags Returned 73
Automatic Stepping And Formatting 75
Asynchronous Searching 76
API Function Reference 78

General Error Scenarios (All Functions) 82
QA_CancelSearch 83
QA_Close 84
QA_EndSearch 85
QA_ErrorMessage 86
QA_FormatExample 87
QA_FormatResult 89
QA_GenerateSystemInfo 91
QA_GetActiveData 92
QA_GetActiveLayout 93
QA_GetData 94
QA_GetDataCount 96
QA_GetEngine 97
QA_GetEngineOption 98
QA_GetEngineStatus 100
QA_GetExampleCount 101
QA_GetFormattedLine 102
QA_GetLayout 104
QA_GetLayoutCount 106
QA_GetLicensingCount 107
QA_GetLicensingDetail 109
QA_GetPrompt 112
QA_GetPromptStatus 114
QA_GetResult 116
QA_GetResultDetail 120
QA_GetSearchStatus 124
QA_GetSearchStatusDetail 127
QA_GetSystemInfo 130
QA_Open 131
QA_Search 133
QA_SetActiveData 134

iv

QA_SetActiveLayout 135
QA_SetEngine 137
QA_SetEngineOption 138
QA_Shutdown 141
QA_StepIn 142
QA_StepOut 143

User Interface API Reference 145
Handling Client/Server Errors 145
Pseudocode Example Of QAS Pro API 146
API Function Reference 148

QAProWV_UICountryCount 150
QAProWV_UIGetActiveCountry 151
QAProWV_UIGetActiveLayout 153
QAProWV_UIGetCountry 154
QAProWV_UIGetFlags 156
QAProWV_UIGetLayout 157
QAProWV_UIGetResult 159
QAProWV_UIGetResultDetail 161
QAProWV_UILayoutCount 163
QAProWV_UILayoutLineElements 164
QAProWV_UIResultCount 167
QAProWV_UISearch 168
QAProWV_UISetActiveCountry 169
QAProWV_UISetActiveLayout 170
QAProWV_UISetFlags 171
QAProWV_UIShutdown 172
QAProWV_UIStartup 173

Low-Level System Functions 177
QAErrorMessage 178
QAErrorLevel 179
QASystemInfo 180

API Configuration 185
Overview 185

Format Of A Configuration File 186
The Configuration Process 188

v

Dataset Installation Settings 189
InstalledData 189
DataMappings 191

Warning Settings 192
NotifyDataWarning 192
NotifyLicenceWarning 193

Output Address Format Settings 194
AddressLineCount 195
AddressLineN 196
CapitaliseItem 198
AbbreviateItem 199
SeparateElements 200
ElementSeparator 201
ElementExtras 202
TerminateLines 203
LineTerminator 204
ExcludeItem 205
FlattenDiacritics 206
CDFVariation 207
Comment 208
MultiValueDPSeparator 209

Error Logging Settings 210
LogFile 210
LogErrors 212

Search Options And Results Settings 213
EngineTimeout 213
SLMaxMatches 214
ShowAllThreshold 215
UPIThreshold 217
EngineIntensity 218
MultiElementLabels 219
ForceAccept 220
OemCharacterSet 221

Informational Prompt Settings 222
NoMatchesMessage 222

Other INI Keywords 223

vi

Error Code Listing 225
Utilities 245

Data Checker 245

vii

Introduction

The QAS Pro API is a suite of functions that you integrate into your own
applications. Once successfully integrated, QAS Pro takes partial address
information that you type in and returns a full, valid address.

You have been supplied with two versions of the API: the Primary (low-level) API
and the User Interface API. This manual deals with everything which relates to the
QAS Pro Primary API and the User Interface API functions, test harness and front-
end screens.

If you are using the QAS Pro API as a client with the QAS Pro server, please
read the accompanying QAS Pro Client / Server documentation first.

QAS Pro API uses separate datasets and additional datasets, between which you
can switch to retrieve address information from several datasets. You can also
create groups of multiple additional datasets to search on simultaneously. You
can make use of three different search techniques to find the address that you
want.

The remainder of this chapter helps you get started with installing and integrating
QAS Pro API and datasets. The other chapters in this guide deal with verifying
your installation, methods of searching with QAS Pro API, details of the Experian
QAS data types, low-level system functions, and QAS Pro API functions, how to
use the User Interface, and how to configure QAS Pro API to return addresses in
the way that you want.

1

Conventions
The table below defines the style conventions used to distinguish features of QAS
Pro API in this manual.

Example Convention

int QAProWV_

Open

Sample code, pseudocode, function prototypes and
configuration settings look like this.

viHandle Parameter names are shown in italics (when not part of sample
code).

Press Enter
Press Cursor up

Key presses are shown in bold (Enter is the same as Return or
Carriage return).

QAProWV_
UIStartup

API functions appear in bold type (when not part of sample
code).

Accompanying Documentation
This section provides a comprehensive list of the documentation supplied with
QAS Pro, and where it can be located.

Data Guide

A Data Guide is supplied with each dataset that you purchase. This guide
provides dataset-specific information and search tips for each dataset, and should
be used in conjunction with the other documentation supplied with QAS Pro.

Under Windows, you have the option to install the Data Guide during data
installation. The guide is installed to C:\Program Files\QAS\Data Guides by
default. If you choose not to install the guide, it can be accessed from the Docs
folder on the data CD/DVD.

Under UNIX, you should copy across the Docs folder to a location of your choice.

2

API Manual

The API manual describes all the functions and data types that make up the QAS
Pro User Interface API and Primary API, suggests how you can make use of the
functions, and describes the searching techniques and configuration options
available.

The API manual can be accessed via the index.htm file,which is located in the
Docs folder on the QAS Pro Installation CD.

Getting Started Guide

If you purchased the standalone version of QAS Pro Plug & Go, a Getting Started
Guide is supplied with the product. This guide is aimed at the end-users of QAS
Pro, and is an introduction to retrieving and configuring addresses.

The guide can be accessed via the index.htm file, which is located in the Docs
folder on the QAS Pro installation CD.

Help Files

In addition to this manual, QAS Pro is supplied with a Configuration Editor help
file. This file can be accessed in two ways:

l by pressing F1 when using the Configuration Editor;

l by selecting Contents and Index from the Helpmenu when using the
Configuration Editor.

Client/Server Documentation

If you have purchased the Client/Server version of QAS Pro API, you are supplied
with a Client/Server manual and an Administrator Console Help file.

The Client/Server manual can be accessed via the index.htm file, which is
located in the Docs folder on the QAS Pro installation CD.

The Administrator Console Help file can be accessed by:

3

l pressing F1 when using QAS Pro;

l selecting Contents and Index from the Helpmenu on the Administrator
Console User Interface.

Upgrade Guide

This document details the new features in this version of QAS Pro. It also
highlights key integration and compatibility issues of which you should be aware,
and provides a step-by-step guide to upgrading an existing installation.

The Upgrade guide can be accessed via the index.htm file, which is located in
the Docs folder on the Installation CD.

4

Licences
You will receive a licence key for each combination of data and product that you
purchase. Failure to enter a valid licence key means that the product will be
unable to use installed data.

If you are running QAS Pro on Windows, you will be prompted to enter your
licence key(s) during the installation process. Alternatively, you can use the
Licence Manager dialog of the Configuration Editor to add and delete licence
keys. See the Configuration Editor Help program for more information about the
Licence Manager.

If you are running QAS Pro on UNIX, you must enter your licence keys into the
qalicn.ini file. You should edit the file manually and save it.

Expiry Warnings

If you have data installed which is nearing expiry, the Dataset Expiry Notification
screen will be displayed when you first open the Configuration Editor. This screen
will warn you if your licences have expired or are due to expire.

Evaluations

When you have an evaluation version of an Experian QAS product or data,
evaluation licence keys are provided that set time limits on the usage of the data.
To continue using the product and data after these time limits have been reached,
you must purchase a full licence.

Street Level Validation

The restrictions that are put in place by Street Level Validation (SLV) are
controlled by the Licence key, meaning that it is quick and easy to upgrade to the
full functionality of QAS Pro. When you upgrade, a new license will be sent out to
you that will remove the restrictions.

For more information on SLV, see the GBR Data Guide.

5

Installing QAS Pro API

If you are installing QAS Pro API as a client, please follow the setup instructions
in the QAS Pro Client / Server manual. This chapter only describes the process
of installing QAS Pro API as a standalone product.

System Requirements
The QAS Pro Primary API is available for the Windows and UNIX platforms listed
below. The User Interface API is available for Windows platforms only. For more
information see "Which Version Of The API Should I Use?" on page 16.

Windows

l Windows XP, Windows Server 2003, Windows Server 2008, Windows Vista
or Windows 7.

l Enough free hard disk space to store all the data files. See the Data Guide
supplied with each dataset for details about how much space you need.

UNIX (Primary API only)

l Most POSIX threaded UNIX-like systems (such as Solaris, Linux etc.)

l Access to a CD-ROM drive (for installation only).

l Enough free hard disk space to store all the data files. See the Data Guide
supplied with each dataset for details about how much space you need.

7

Windows Installation
1. Insert the QAS Pro API CD into your CD-ROM drive.

2. The setup program should start up automatically.

If it does not start, click the Start menu and select Run. In the dialog box that
appears, type d:\setup, where d is the drive letter of your CD-ROM drive, and
press Enter.

3. Once the installation program starts, follow the on-screen instructions to
install QAS Pro.

4. If you have previously run the QAS Pro installer, the Qualifying Product(s)
Detected screen will be displayed. This screen allows you to choose to
update the version of QAS Pro that is currently installed. Alternatively, you can
keep the previous version and install this version alongside it.

5. On the Licence Agreement dialog, the licence agreement is displayed.

You should read the licence agreement, and if you are happy with the terms
and conditions select the I accept the terms of the licence agreement
option.

Click the Next button to proceed.

8

6. If you choose to install a new copy of the product, the Choose Destination
Location screen is displayed:

If you have previously installed any other version of QAS Pro, the folder
where this version is located on your system will automatically be selected
as the default destination folder. Therefore, if you do not want to overwrite
the contents of this folder, you must browse to a different location.

7. The Setup Configuration screen will be displayed if you have previously
installed QAS Pro on your system.

Click the Copy my setting from option and choose an existing installation, if
you want to use the configuration settings of an existing Experian QAS
product.

Click the Install with default settings option if you want to use the default
configuration settings for QAS Pro.

9

8. On the Setup Type screen, select one of the QAS API Standalone options
(unless you have already installed the QAS Pro Server). This installs the full
program rather than just the QAS Pro client.

9. On the Select Program Folder screen, specify the location of the program
files by typing a new folder name, or selecting an existing folder from the list.

10. On the QAS Electronic Updates Screen, check the box to install QAS
Electronic Updates, which will allow you to update your Experian QAS
programs and data over the internet rather than with CDs or DVDs.

11. After the product has installed, you can choose to install data. Check or
uncheck the Install QAS Data checkbox as required.

12. Click Finish.

If you chose to install data, the data installation process will begin. See
"Installing And Updating Data" on page 11 for details.

Otherwise, your installation is complete.

10

UNIX Installation
To install QAS Pro API on UNIX, just copy the appropriate program files from the
CD-ROM.

Installing And Updating Data
If you chose to install Experian QAS Data on the final product installation screen,
follow the on-screen instructions to install the data. Alternatively, you can run the
data installer from the CD at a later date. To ensure that all datasets are
compatible, all data CDs for a country must be the same version, and should be
installed at the same time.

A set of files is installed for each dataset you need to support. For example, there
are four data files installed for Australia: aus.dts, aus.tpx, aus.zlx and aus.zlb.

Before you begin the data installation process, you should ensure that you
have the despatch note that is supplied with QAS Pro. The despatch note
contains all of the licence keys for each dataset that you have purchased.
When you install data for the first time, you are prompted to insert the licence
key for each dataset that you want to install. For more information about
licences, see the Licence Manager section of the Configuration Editor online
help.

Windows

To install or update data on Windows, follow these steps:

1. Insert the first CD-ROM or the DVD into the relevant drive, click the Start
menu and select Run.

2. In the dialog box that appears, type d:\setup, where d is the drive letter for
your CD-ROM or DVD drive, and press Enter.

3. Follow the instructions on the screen to install new or replace existing
datasets.

11

UNIX

You should copy all files from the CD-ROM or DVD data folder. Data files must be
in lower case and in the following format: usa.zlx, usa.dts, usagcd.dap.

The first time that you carry out a data update, you will need to add
InstalledData and DataMappings settings to the qawserve.ini file.

The qawserve.ini file is located in the apps folder. Open the file using a plain text
editor such as vi or emacs. Under the [QADefault] section, locate the settings
InstalledData and DataMappings. These settings contains a list of the
datasets you have installed. See "Dataset Installation Settings" on page 189 for
more information.

Add a line to each setting for each new dataset that you are installing, or update
the path for any dataset you are updating.

Installing USA Names Data On UNIX

United States with Names data is supplied on four CDs by default, but may also
be supplied on DVD.

If you are installing this data from a DVD, you should copy the relevant files from
the data folder. Data files must be in lower case and in the following format:
usa.zlx, usa.dts, usagcd.dap.

If you are installing this data from a CD, you must re-assemble the
usanam.ads.00x files from all CDs after installing. This means that you cannot
simply copy the required files from a subfolder on the CDs to the appropriate
folder on your computer. Instead, QAS Pro for UNIX includes a shell script that
automates the copy and reconstruction process, and ensures that you enter the
product and data CDs in the correct order. In addition, the script will warn if you
are overwriting files, and will remove part-constructed files if you choose to
abandon the installation.

To install the United States with Names dataset from a CD on a UNIX platform,
follow these steps:

1. Using the command line prompt, locate the contents of the first data CD.

2. Run the following command:

12

sh qascopydata [destination] [source]

The source for the data files is optional. The shell script will assume that they
are in numbered subdirectories within the current working directory, and will
prompt for a new source if a numbered subdirectory is not found; for example
if you need to change the CD.

3. The shell script installer will check whether files already exist in the
destination folder and will warn the user if they do, giving the option to delete
them and continue or to abort the process.

4. If the USA names files were not present in the destination folder or if you have
decided to delete them and continue, the installer will begin copying files.

5. Once the shell script has finished appending a sub-component file to the data
file that is being reconstructed, it will look for the next sub-component file. If it
can find it, the installer will continue without prompting: otherwise it will
request the next CD.

If you do not provide the CD, the installer gives you the choice of specifying a
new path to the component data files, re-trying the current one or aborting the
procedure.

Aborting will delete all files that the installer has placed on the system.

You are still responsible for maintaining correct ini files and updating
qawserve.ini and qalicn.ini as appropriate.

Data Updates
Experian QAS provides periodic updates of datasets as and when updated data
is available. These updates are supplied to you on CD-ROM; follow the
instructions in the installation program to replace your existing datasets.

Datasets expire after a certain period of time, at which point you must install an
update. The low level API function QA_GetLicensingDetail (see page 109) tells
you how many days are left before a dataset expires. By default, a dialog will be
displayed when you start QAS Pro, which lists all the datasets that are due to
expire soon. You can disable this dialog using the qaattribs_NOLICENSINGDLG
flag (see QAProWV_UIStartup on page 173).

13

Getting Started With QAS Pro API
This section provides a few hints on how to start integrating QAS Pro API with
your own application.

The basic steps you should take for a successful integration are as follows:

1. Understand How QAS Pro Searches

The chapter "Searching With QAS Pro" (see page 25) describes how QAS Pro
API searches on your addresses. Reading this should clarify the values that
are returned by some of the API functions.

2. Run The Test Harnesses

Running one of the test harnesses supplied with the API should verify that
you have installed the API correctly. It will also give you an idea of what QAS
Pro API can do, and the type of results it can produce.

3. Refer to the Pseudocode and Sample Code

The "Pseudocode Example Of QAS Pro API" on page 67 demonstrates a
possible interpretation of the API functions. Samples are available in C.

4. Use the API Functions

For a complete listing of QAS Pro API functions see the "API Function
Reference" on page 78. You should choose whether the Primary API or the
User Interface API is best suited to your requirements.

It is recommended that you integrate the API in stages, beginning with the
QA_Open,QA_Close and QA_Shutdown functions, followed by address
search and retrieval facilities. Any other functions can be added in the
appropriate places.

You should also make use of the system functions, especially
QAErrorMessage and QAErrorLevel or QA_ErrorMessage. These
functions enable you to see the description and severity of any errors that
occur, and as such should be called after any function that has returned an
error. See the full "Error Code Listing" on page 225.

When you wish to run your integrated application, you should ensure that the
following files are in the same directory as the application executable:

14

Primary API UI API

qaworld.ini
QAS Pro API configuration file

qaworld.ini
QAS Pro API configuration file

qawserve.ini
Data file locations and other
application configuration settings

qawserve.ini
Data file locations and other
application configuration settings

qaupied.dll
QAS Pro API DLL

qauwved.dll
QAS Pro API DLL

qaupied.rev
QAS Pro API DLL revision file

qauwved.rev
QAS Pro API DLL revision file

qaupied.0xx
QAS Pro API DLL language resource
file (where 'xx' represents the
language code)

qauwved.0xx
QAS Pro API DLL language resource
file (where 'xx' represents the
language code)

qauwv001.dll
QAS Pro API (UI) language GUI
resource file (English-United States)

qalcl.dat
Locale information file

qalcl.dat
Locale information file

qalicn.ini
Licence information file

qalicn.ini
Licence information file

5. Configure your API

Before running your integrated API, you need to give QAS Pro API the
following information:

l The format of your output addresses

l The whereabouts of your datasets(s)

This information must be specified in the configuration file (see "Overview" on
page 185).

You can test your integration by trying some of the search examples provided in
the Data Guide for your dataset.

15

Which Version Of The API Should I Use?
If you are running Windows, and the QAS Pro front-end meets your input and
output requirements, it is recommended that you integrate the User Interface API.
This is the easiest method of gaining maximum functionality with the minimum of
effort, as programming with these functions is simpler.

QAS Pro User Interface API can be integrated with a minimum of five functions:

l QAProWV_UIStartup (see page 173)

l QAProWV_UISearch (see page 168)

l QAProWV_UIResultCount (see page 167)

l QAProWV_UIGetResult (see page 159)

l QAProWV_UIShutdown (see page 172)

These functions start up and shut down the QAS Pro API, perform searches and
return full addresses. If you wish to provide additional functionality, such as
viewing and selecting address layouts and datasets, the appropriate functions
can be added to your program.

The User Interface API is available for Windows Server 2003 SP2, Windows
Server 2008, Windows XP SP3 and Windows Vista SP1.

If, however, you need to use your own front-end screens, or you are running
UNIX, you should integrate the QAS Pro Primary API.

The QAS Pro Primary API provides you with the functionality you need to integrate
QAS Pro seamlessly into your application. It is up to you how searches are
performed and results are returned, and you are responsible for any user
interface that is required. Although these functions require more programming on
your part, they also give you great flexibility in integrating the API.

Even if you choose to integrate the QAS Pro Primary API, you might find it useful
to look at the sample code provided for the User Interface API, to get an idea of
the available functionality.

The QAS Pro Primary API is available for Windows Server 2003 SP2, Windows
Server 2008, Windows XP SP3, Windows Vista SP1 and UNIX.

16

Sample Code

The sample code should be seen as the starting point for integration, and should
be tailored according to the type of integration that you are performing.

Sample code is used to demonstrate best practice and includes the features that
are likely to be required by the majority of users.

The single-line sample code is applicable for environments where it is not
possible to detect and act upon characters as you type. This means that the
picklist is not automatically updated as you enter refinement text, and all
processing (searching, stepping in etc.) is performed once you have pressed
Enter.

If you are running the Primary API test harness in client/server mode, any loss of
connection between client and server results in the active search being cleanly
aborted. The next search attempt triggers a reconnect, switching to any defined
backup servers if available. Refer to the Client / Server documentation for more
information.

Testing Your Primary API Installation
The Primary API is supplied with a simple text-based application, called qs_sl.exe
(qs_sl on UNIX), and with sample code. Together these can be used to verify that
you have installed QAS Pro API correctly, and to demonstrate some of the API’s
key functionality.

The test harness is not intended to be used as a commercial application.

The test harness enables you to obtain matching addresses and picklists from
input address information that you type in on the command line.

The examples in this section use the C version of the test harness.

17

Searching With A Test Harness

If you are using Windows, run the test harness from the shortcut in the Program
Group which was created when you installed QAS Pro API.

The test harness appears, looking similar to this:

To perform a Single Line search, follow these steps:

1. Press Enter to select the default layout.

2. Press Enter again to select the default dataset.

Alternatively, type ? and press Enter to display a list of all datasets with their
identifiers. Type the relevant code (for example, DEU for Germany, AUS for
Australia) and press Enter to select the related dataset.

3. Once you have selected the dataset you want to work with, the screen will
look like this (in this example, the GBR dataset was selected):

18

4. Enter a search string, separating each part from the next with a comma, and
press Enter. For example (if you are using the GBR dataset):

linden gardens, london

For examples of searches with other datasets, see the Data Guide supplied
with each dataset.

The test harness returns the following:

There are 181 possible matches, as shown by the Match Count.

5. Type 30 and press Enter to refine the picklist and to therefore reduce the
number of matches. Press Enter at any prompt to remove the refine and
return the list to the way it was.

There are now two matches displayed. Note that they are numbered from 1 to
2 in the picklist.

19

6. Type #1 and press Enter to select the first picklist entry.

The full address is returned:

If your text appears odd, this may be because any diacritics in the text (for
example, accents and umlauts) are not displaying correctly in the DOS
Console. You can remove diacritics with the OemCharacterSet setting
(see "Search Options And Results Settings" on page 213).

Testing Your UI API Installation
The QAS Pro User Interface API is supplied with a very simple application called
qs_ui.exe, and with sample code. Together these can be used to verify that you
have installed QAS Pro API correctly, and to demonstrate some of the API’s key
functionality.

The test harness enables you to obtain matching addresses and picklists from
input address information that you type in.

See "Sample Code" on page 17 for more information about the purpose of the
sample code. The UI integration scenario is the preferred solution on Windows
because it uses the standard QAS Pro dialog, thereby minimising the size and
complexity of the integration, and meaning that you have access to all available
search modes, as well as the standard User Interface functionality (selection of
layouts and databases, menus, toolbars etc.).

If you are running the UI API test harness in client/server mode, any loss of
connection between client and server results in the display of appropriate
warnings. Refer to the Client / Server documentation for more information.

20

The examples in this section use the C version of the test harness.

Running The Test Harness

Run the test harness from the shortcut in the Program Group which was created
when you installed QAS Pro API.

The test harness appears, looking similar to the example shown below:

This is the QAS Pro User Interface. For a comprehensive description of all of its
aspects and options, see the chapter "QAS Pro User Interface" on page 41.

The following sections describe using the test harness to undertake a Typedown
search, a Single Line search and a Key search.

21

A Typedown Search

In the example below, you are searching for 7 Sand Lake Road in Orlando, FL,
USA.

For examples of searches from other datasets, see the Data Guide supplied
with your data.

1. Select the Typedown search button on the toolbar or press Ctrl+T.

2. Enter this search string:

orlando

The test harness starts searching as soon as you type the first character. After
typing 'orlando', this is what the test harness returns:

There is only one match for this search string.

3. Click the Select button (or press Enter) to step into the picklist item.

4. Type sandl.

In this example it is the second match in the list that you want.

5. Use the arrow down cursor key to move the focus to Sand Lake Rd Orlando
FL. Click the Select button (or press Enter) to step into Sand Lake Rd.

There are too many matches to display in a picklist.

6. Type 7.

This picklist is returned:

The match you want is at the top of the picklist.

22

QAS Pro also returns several other matches, and, where appropriate, has
split the matches into odd and even number ranges.

7. Click on the Select button or press Enter.

The full address is returned to the address edit screen.

8. Accept the search to return the result from the API.

A Single Line Search

1. Click on the Single Line search button on the toolbar, or press Ctrl+S.

2. Enter a search string, separating each part from the next with a comma, and
select the Search button (or press Enter). For example (if you are using the
Australia dataset):

65 Rushton St, Carnarvon, WA

This is what the test harness returns:

As the test harness has only found one address which precisely matches your
search criteria, it returns it directly to the address edit screen.

3. Accept the search to return the result from the API.

For examples of searches from other datasets, see the Data Guide supplied
with your data.

23

A Key Search

In the example below, you are searching for an address using a gas meter
number.

1. Select the Key search button on the toolbar or press Ctrl+K.

2. Type in the gas meter number, 2481849308, and press Enter.

3. The correct address is returned:

24

Searching With QAS
Pro

QAS Pro has the following search modes:

l Typedown searching

l Single Line searching

l Key Searching

Any of these methods allow you to capture a full address with just a few
keystrokes.

Typedown searching starts with the most general address element and, once
that has been found, moves on to more specific parts of the address.

Typedown is the more useful search option if you are sure about the validity of the
address information. For example, if you are taking address details over the
phone, you can enter the caller’s postcode and then, if required, you can search
for the correct street and building number.

See "Typedown Searching" on page 26 for more information.

Single Line searching requires you to enter one or more address elements, each
separated by a comma, in the order that they would appear on an envelope (for
example, the street name followed by the town).

Single Line searches can use a variety of techniques to return the correct address
from incomplete or misspelled information. For example, if you were verifying
illegible handwritten addresses, Single Line searches may return the best results.

See "Single Line Searching" on page 28 for more information.

25

Key Searching allows you to search on key elements of the data. Using Key
Searching, you can, for example, search on gas and electricity meter numbers or
serial numbers using the United Kingdom Utility dataset, or on a Unique Property
Reference Number (UPRN) using the Gazetteer dataset.

See "Key Searching" on page 32 for more information.

Which Search Method Should I Use?
It is strongly recommended that you integrate Typedown searching as the primary
searching method, and use Single Line searching as a secondary option,
especially if you have multiple datasets. This is because Typedown provides a
consistent method of entering search information across all datasets (for example,
a postal/ZIP code followed by a street name), and reduces the likelihood of errors
by verifying data as it is entered.

While Single Line searching allows you to enter any combination of address
elements, you need some knowledge of each dataset's address information in
order to decide which part of the address will return the most search results, and
hence provide optimum performance. For example, entering a postal code for a
UK address will return an average of fifteen possible full address matches.
However, an Australian postal code could cover several localities (which
corresponds to thousands of addresses).

Key searching allows you to search on key elements of the data. Key searching
can only be used with certain datasets that contain a logical reverse search key.
For example, United Kingdom with Gas data contains a Meter Number (MPRN)
that can be searched on.

Typedown Searching
In Typedown searching, you start by typing the most general address element (for
example, a postcode, county, town or locality in the United Kingdom) and, once
that has been found, you move on to more specific parts of the address (for
example, the street name, property number, organisation name or PO Box).

26

QAS Pro API searches on the string that you enter, which can be as little as one
character. When you use Typedown searching, QAS Pro will always look for an
exact match first. If an exact match is found, and other close matches are below
the match threshold, all of the matches are returned. However, if the close
matches exceed the match threshold, only exact matches are returned.

Note that any mixture of upper and lower case characters can be used, as QAS
Pro API does not differentiate between upper and lower case text.

It is usually faster and more efficient to type in the postcode or ZIP code, than it
is to use other address elements, such as a town name.

The following sections describe the types of search you can perform using the
Typedown mode.

Searching For A Residential Address

This type of search usually involves three stages.

Typically, after an initial search on a place or postal/ZIP code, QAS Pro will look
for street names. Once you have selected the street name that you want, you can
enter a property number to return the full address.

You cannot type in the property number followed by the street name, as you can
with Single Line searching, because Typedown searches cannot match on
numbers until you have selected a street name.

27

Searching For An Organisation Address

This type of search usually involves two stages.

After the first stage of searching on a place name or postal/ZIP code, QAS Pro API
will look for organisation and street names. Once you have found the organisation
that you are looking for, QAS Pro API returns the name and full address.

Searching For A PO Box Address

This type of search usually involves three stages.

After the first stage of searching on a place name or postal/ZIP code, QAS Pro will
look for the PO Box type. Once you have stepped into this, you can enter a PO
Box number to return the final address.

Typedown searching for PO Box addresses is not recommended for large
datasets. For example, searching United States data for a PO Box address can
be slow if your first stage search contains a large number of matches (for
example, a state).

Typedown Troubleshooting

Typedown searching does not use pattern matching. Therefore, if any address
element is misspelled, QAS Pro will not be able to find it.

If you type in a place or street level combination which does not match anything in
the dataset, a 'No Matches' message appears in the Results area. Incorrect text
can be deleted with the Backspace key.

Single Line Searching
Single Line searching works in the opposite way to Typedown searching: you
type in address elements starting with the most specific (for example, a house
number and/or street name) and move on to more general elements (for example,
a town or postcode in the United Kingdom).

28

QAS Pro allows you to search on any address element or combination of address
elements that are separated by a comma. When you have entered the
information, you must activate the search manually.

Note that any mixture of upper and lower case characters can be used, as QAS
Pro API does not differentiate between upper and lower case text.

Single Line searching is also equipped with facilities designed to make searching
easier and more efficient. These facilities fall into two categories:

l "Wildcard Searching" (see page 29)

l "Identifying Address Elements" (see page 32)

Wildcard Searching

Single Line searching can use wildcards to replace one or more missing letters in
your address information.

There are two wildcards available. You can use a combination of wildcards in a
single search line.

l Question mark wildcard (?)

This wildcard replaces a single character in an address or postcode and can
be placed anywhere within an address element. For example:

Le?land Rd, London

Hawthorn Ave, ?N21 ?HA

The Question Mark wildcard cannot be used with ZZ Postcode searching.

l Asterisk wildcard (*)

This wildcard replaces any number of characters at the end of an address
element. For example:

Popes *, Twickenham

South St, Peter*

29

For more information on using the Asterisk wildcard with ZZ Postcode
searching, please see the QAS Pro Getting Started Guide.

Use multiple wildcards sparingly. If too many wildcards are used in a search,
there is a risk of considerably extending the search time, and not returning any
matches.

Question Mark Wildcard

The question mark represents a single character and can be placed anywhere
within an address element.

When searching with a question mark wildcard, QAS Pro API produces a list of all
matching streets and postcodes. For example:

If you enter: QAS Pro retrieves:

?146? A list of all US streets with zip codes beginning 114, 214, 314
etc. Similarly, all zip codes ending with 461, 462 and so on.

6 victoria
crescent, 3?67

The full address: "6 Victoria Cres, Abbotsford, VIC 3067" in
Australia.

Asterisk Wildcard

The asterisk can stand for any number of characters and must be placed at the
end of an address element.

When searching with an asterisk wildcard, QAS Pro API returns a list of every
possible match. For example:

If you enter: QAS Pro retrieves:

Woodhaven*,Portland,
ct

Woodhaven Drive and Woodhaven Road in Portland,
America.

30

Keyword Searching

It is possible to search for certain key words within an address using a keyword
search. This is implemented with the asterisk wildcard.

If you enter: QAS Pro retrieves:

*park, nottingham All addresses in the city of Nottingham with a first
address element that contains the word "park".

In a keyword search, the asterisk can be anywhere in the address element.
Keyword searching is therefore especially useful if you are looking for a particular
type of organisation or institution, such as banks, colleges, hospitals, etc. For
example, the search "*university,dundee" looks for any university in Dundee.

Searching With Partial Addresses

A partial address consists of one or more address elements, separated by
commas. One such partial address element might be sufficient to identify the
complete address if the organisation, house or street name is unusual. Capital
letters are not required.

The address elements available for the datasets that you have purchased are
shown in the Data Guide that is supplied with each dataset.

You can use any combination of address elements in any order. If there are
discrepancies between the spelling of the entry and the spelling as recorded in
the dataset, QAS Pro usually manages to find the required address.

If a definition is not specific enough, the search for matching addresses can take
too long or can result in too many addresses to be useful. For example:

Green*

followed by a town name would retrieve:

l all matching organisations (Greenwood Motors, Green Acres Health Farm,
etc.);

l all matching house names (Green Cottage, Green Trees, etc.);

31

l all matching street names (Green Lane, Greenfield Street, etc.);

l all matching place names (Greenslopes, Greenwich, etc.).

Identifying Address Elements

You can limit a search to make it more efficient, by identifying which address
elements one or more parts of your address represents.

Thus a part of an address can be identified as, for example, a street name or an
organisation name. By tagging part of the address as a post town, QAS Pro only
looks through its list of post towns when it endeavours to match that part of the
address.

See the Data Guide provided with your dataset(s) for details of the address
components that can be identified in this way.

Key Searching
Key searching works in a similar way to Single Line searching. You type in the
search term, and QAS Pro returns the address that matches the search in the
picklist. By clicking on the Search button or pressing Enter, the typed-in
information becomes a subject of the search.

Using Key Searching, you can search on the following data:

Dataset Element

United Kingdom with Gas Meter Point Reference Number (MPRN)

Meter Serial Number

United Kingdom with Electricity Meter Point Administration Number (MPAN)

Meter Serial Number

United Kingdom with Gazetteer
Data

Unique Property Reference Number
(UPRN)

AddressBase™ Premium Unique Property Reference Number
(UPRN)

Unique Delivery Point Reference Number
(UDPRN)

Topographic Identifier (TOID)

32

Searching On A Utility Meter Number

To search for a gas or electricity meter number or serial number, you type in the
meter number. QAS Pro API returns the address(es) that match the search.

Searching For A UPRN

To search for an address using the unique property reference number (UPRN),
you type in the UPRN. QAS Pro API returns the address that matches the search
term.

33

Alias Matching
This symbol indicates an alias match or a recode message. If this symbol is

returned against an address, this means that although Pro has recognised the
information entered by the user as a possible version of the name or address, it
has replaced it with the official (postally-correct) version from the dataset.

United Kingdom

Alias Matches

An alias match would occur, for example, if you entered a street and locality,
where the locality is not necessary to the address and has been replaced by the
town. It would also occur if the postcode has recently been changed and QAS Pro
is aware of this: if you enter the old postcode, it will automatically be replaced by
the new one.

Here are several examples of why an alias match may occur with United Kingdom
data:

Changed Postcode The Post Office may change the postcode of an
existing address.

Street/Town/Name Changes The town council and the post office may be out
of synchronisation about changes to the name
of a street or town, or to the names of residents.

Disputed Address For example, someone living in Londonderry
might say that they live in Derry. In this case, the
address is matched exactly since Derry is
stored as an alias, but the returned formatted
address will be in Londonderry.

Name Abbreviation For example, Michael Smith may prefer to be
known as Mike Smith, and may use this name
in correspondence. In cases like this, "Mike"
would be stored as an alias for "Michael".

34

Recode Messages

When an alias match results in the recoding of a postcode, locality or street, this
change is highlighted. An alias match would also occur if the postal code, locality
or street has recently been changed and QAS Pro is aware of this; for example, if
you enter the old postal code, it will automatically be replaced by the new one.

Australia

Alias Matches

An alias match would occur, for example, if you entered the name of a
thoroughfare or locality which has changed, or which has a local variation.

Bordering Localities

When you search for a street, you may not know the correct postal locality in
which the street is situated. In these cases, QAS Pro also searches for the
specified street in all of the localities which border the input locality and the input
postcodes.

For example, all addresses that fall within the locality of Parramatta will return a
number of bordering localities, including Mays Hill, North Parramatta, N
Parramatta, Rydalmere, etc. When the street is found in a locality that borders the
input locality or postcode, the entry is marked as an alias in the resulting picklist.
The accuracy score is reduced if a bordering locality is used to match an address.

When a picklist entry is in a bordering locality, this is also prominently displayed
in the status line when that entry is highlighted.

35

New Zealand

Alternative Names

A street, town / city or a suburb may have an alternative name to the official postal
name. The alternative name will only be returned if it has been supplied in the
search and if the appropriate submitted element has been fixed in the address
layout. Refer to the New Zealand Data Guide that was shipped with your data for
detailed information about the address elements, including submitted elements.

Suburb Adjacencies

When you are searching for a street using suburb information, you may not know
the correct postal suburb in which the street is situated. In such cases, QAS Pro
also searches for the specified street in all of the suburbs which border the input
suburb.

Suburb adjacencies are used for searching purposes only. They are not
returned in the final address.

36

Retrieving DataPlus Information
QAS DataPlus can provide a wide range of information relating to an address, as
a supplement to the QAS Pro API. Currently, DataPlus information is only
supplied with certain datasets; if you do not have DataPlus, you can skip this
entire section.

DataPlus information is contained in datasets. Each piece of information relates to
a general area, such as a locality or postal/ZIP code, or, when the data requires
higher resolution, it can be related to the delivery point (letter box). DataPlus
handles the information in terms of a code and its related description (if there is
one). For example, a dataset containing grid references would only include
codes.

DataPlus details can only be viewed once you have selected and displayed a full
address from QAS Pro API, and configured your layout to display DataPlus items.
For example, if you have the Australia dataset with the associated latitude and
longitude DataPlus set, and you perform a Typedown search on north sydney,
followed bymiller and then 314, QAS Pro finds this address:

314 Miller Street,
NORTH SYDNEY NSW 2060
-33.828965 151.20882

If you want to retrieve DataPlus information with your addresses, you should
configure your address layout so that it contains lines specifically for DataPlus.
See the AddressLineN keyword under "Output Address Format Settings" on
page 194 or the Configuration Editor Help for further details about setting up
DataPlus information.

Refer to the relevant Data Guide for a complete listing of DataPlus sets.

Retrieving Multiple DataPlus Values

If your address contains multiple DataPlus values, such as several gas meter
numbers for one property, and if you have configured your address layout to
contain this DataPlus item, QAS Pro API returns all DataPlus values in one string,
separated by a delimiter.

37

You can specify the delimiter you want to use with the MultiValueDPSeparator
configuration setting (see "Output Address Format Settings" on page 194), or
using the Configuration Editor. The default delimiter is |. For more information
about configuring the delimiter using the Configuration Editor, see the 'Format
Options Pane' topic in the Configuration Help program.

The following example shows you how to retrieve multiple gas meter numbers
using the User Interface API.

1. Search for the required address using the appropriate search method.

2. In the address return screen, you can see the correct address:

38

3. Click on the DataPlus tab.

The name of the DataPlus set appears on the left, with the related value on
the right. Note that in this case, the property has four gas meters.

4. You can scroll through the different meters by using the and arrow
buttons in the Gas field. The gas meter number for each meter changes
accordingly.

5. When you click the Accept button, both address and DataPlus information
are pasted back to your underlying application:

39

Depending on the line width you have configured, all of the characters in the
returned elements may not be returned when you paste the address into an
application. This occurs because the configured DataPlus line width is too
short. For more information about configuring DataPlus lines, see "Output
Address Format Settings" on page 194 or the Configuration Editor Help
program.

Barcoding

If you have the Australia, United States, Netherlands or United Kingdom datasets
installed and you wish to add barcodes to your addresses, this functionality is
available as a DataPlus set.

The font used for the barcodes is installed with QAS Pro. If the barcode appears
as a list of numbers, ensure that the relevant font from the following list is in your
standard Windows font directory:

l the 'QAS 4State Barcode' (for Australia);

l the 'USPS POSTNET Barcode' (for United States);

l the 'CustomerCode Plain (True Type)' (for the Netherlands and the United
Kingdom).

For the Primary API, you will see the barcode as a list of numbers.

40

QAS Pro User Interface

This chapter is relevant for Windows users working with the User Interface API
only.

All address searches are performed on the user interface. You can select which
searching facility you want to use, which address layout to work with and which
dataset to search against.

This section covers the ways in which you can set up the user interface, and
details every option available.

When you first run QAS Pro, the user interface should look similar to this:

Some of the options on the user interface might not be available to you. The
options available depend on what has been specified in the vlFlags parameter of
QAProWV_UIStartup (see page 173), or what has been specified in the
Configuration Editor.

41

There are six parts to the QAS Pro interface, which are described in this section.

Menu Bar

The menu bar consists of five drop-down menus, from which every option
available with QAS Pro can be selected. The menu options can be summarised
as follows:

Pro Minimise QAS Pro to the taskbar or Close QAS Pro to the
system tray. To fully exit QAS Pro, right-click on the QAS Pro
icon in the system tray and select Exit from the menu.

Search Start a new search, step back to the previous search level,
select the searching method and specify advanced search
options.

Dataset Select a dataset. This menu option is available only if more
than one dataset is installed.

View Select an address layout to work with, show or hide the
menu bar, toolbar and partial address bar, and select the
user interface language.

Help Get help on all aspects of QAS Pro from this Help program.

To view the options on a menu, either click on the menu name with your mouse,
or hold down the Alt key and press the key of the underlined letter in the menu
name. For example, to select the Searchmenu, press Alt+S.

Similarly, once the menu options are displayed, you can select an option by either
clicking on the option name with your mouse, or by holding down the Alt key and
pressing the key of the underlined letter in the menu option name.

For example, to select the New Search option using the menus instead of the
hotkeys, press Alt+S to select the Searchmenu, and then Alt+N to select the
New Search option.

To hide the menu bar, selectMenu from the Viewmenu. To make the bar visible
again:

1. Click on the envelope on the title bar.

2. Select Showmenu from the drop-down menu that appears to make the bar
visible again.

42

Toolbar

The toolbar contains the following options, as shown in the screenshot above
(from left to right):

New Search Clears the existing search and starts a new one.

Back Steps back to the previous search level.

Typedown Search Selects Typedown searching.

Single Line Search Selects Single Line searching.

Key Search Selects Key searching.

Select Layout Allows you to choose the address layout you want to use.

Dataset If you have more than one dataset installed, you can select
the dataset you want to search with from this dropdown list.

When using QAS Pro, you can find out the function of a button on the toolbar by
placing the cursor over it and holding it there for a few seconds. A short
description of the button (known as a tooltip) appears.

To hide the toolbar, select Toolbar from the Viewmenu. Repeat this action to
make the toolbar visible again.

43

Search Area

The Search area is used to type in address elements to search on.

The Search area prompt depends on the search method you select.

Search area for Single Line searching:

Search area for Typedown searching:

Search area for Keyfinder searching:

As you work through the stages of searching, the refinement prompts above the
search field provide specific pointers to the type of information that should be
entered at each stage; for example, 'Enter postcode or place'.

The Typedown prompt will vary according to the dataset that you are using.

For further details of the types of search you can do with QAS Pro, see "Searching
With QAS Pro" on page 25.

44

Results Area

The main part of the user interface, the Results area, displays the matches
returned in response to your search. If there are several alternatives, this area
displays a picklist. If there is only one match, or a number of picklists have been
worked through to reach a final selection, a full address will be displayed on the
"Address Edit Screen" (see page 53).

The results area also displays informational prompts to clarify the current state of
the search, for example, 'Continue typing (or select to show all matches)'.

An address can be returned to the address edit screen at any point during a
search by pressing Ctrl+Enter. Please note that in doing so the returned
address will not be fully validated by QAS Pro and, as such, its accuracy can
not be guaranteed.

See "Picklist Symbols" on page 49 for further details of picklists.

Partial Address Bar

The partial address bar displays the information that is currently selected in the
results picklist as the most complete address possible. For example, the screen
shot above shows a partial address from the Netherlands Typedown search
results shown below:

Pressing Ctrl+Enter returns the address that you last stepped into. However, you
should be aware that this will not produce a fully postally correct address from a
dataset.

To hide the partial address bar, select 'Partial Address' from the Viewmenu.
Repeat this action to make the bar visible again.

45

Status Bar

The status bar indicates the current action and status of the QAS Pro Dialog.
When QAS Pro is first run, the status bar displays the searching method – Single
Line, Typedown or Key search – that is currently selected, as shown in the
screenshot below.

Other information that can be viewed on the status bar is described below:

Stop button This allows you to abort a search.

Number of
matches

Displays the current number of matches during any search.
During a Typedown search, you might see 'Too many' on
the status bar. This means that the number of matches found
so far exceeds the specified match threshold, and you need
to enter more information.

Search in
progress

During a Single Line search, a blue bar travels from side to
side on the status bar, indicating that the search is in
progress. This line disappears when QAS Pro has found all
possible matches, or when a search has been stopped.

Elements have
overflowed

Displayed when an address has been returned to the
address edit screen, but one or more address elements are
not visible due to lack of space. Existing lines can be
widened or more address lines can be added with the
Configuration Editor. Refer to the Configuration Editor help
for more information.

Elements are
truncated

Displayed when an address has been returned to the
address edit screen, but the information on an address line
is too long for the line. Address lines can be widened with
the Configuration Editor. Refer to the Configuration Editor
help for more information.

Select Back for
close matches

Displayed when QAS Pro has found one 100% match in
Single Line searching, and returned a full address to the
address edit screen. Click the Back button or press Ctrl+Z
to see a picklist of every other possible match found by QAS
Pro.

46

Bordering
Localities

When conducting an Australia search, this is displayed
when the picklist contains bordering localities. For example,
when searching on 'Parramatta', QAS Pro will return a
number of bordering localities, including 'Parramatta East',
'Parramatta North', 'North Parramatta', etc.

Alias match Displayed when the current selection on the picklist is an
alias match – i.e. QAS Pro has recognised the information
that was typed in, but returned a different, postally-correct
version.

Postcode recoded
or
Locality recoded

Displayed when either the postcode or locality has been
recoded. If you select a recoded entry from the picklist, the
message will be displayed in white text on a blue
background. This message will also be displayed on the
final address screen.

Warning –
address not
verified

Displayed when an incomplete address is returned to the
address edit screen.

Exact matches
shown – continue
typing for more
matches

Displayed when there are exact matches, and a higher
number of close matches than the limit of the threshold
allows. Type in a * or press Select to view the complete list
of matches.

Select Button

When you use Typedown searching, QAS Pro will always look for an exact match
first. If an exact match is found, and other close matches are below the match
threshold, all of the matches are displayed. However, if the close matches exceed
the match threshold, only exact matches are displayed.

You can click the Select button to display a full list of all results.

Picklist of Returned Addresses

When more than one address is returned from a search, a picklist of the available
selections will be displayed. Various symbols are used to display the nature and
state of the addresses.

47

The picklist will vary slightly depending on whether Single Line or Typedown
searching have been used. These two picklists are covered in the following
section.

48

Picklist Symbols

There are five symbols that you might see next to matches in a picklist:

This symbol of a letter and a magnifying glass in the grey box at the top
of a picklist in Single Line searching shows what QAS Pro is currently
searching on.

Single full address
A single white envelope indicates a single match. Select this to return a
full address directly to the address edit screen.

Expandable item
A sign and a symbol of multiple white envelopes next to the item
signifies an expandable item. By selecting an expandable item you will
see a further picklist containing every component of that item. For
example, if the item is a road, expanding it will cause all the premises in
that road to be displayed.

Names entry symbol
The symbol of a person indicates a name entry. If you select a name
entry, both the name and full address are returned to the address edit
screen.
This symbol can only be seen if your dataset includes name data.

Alias match symbol
A symbol of single or multiple grey envelopes indicates an alias match.
This means that although QAS Pro has recognised the address
information as a possible version of the address, it has replaced it with
the official version from the dataset. See "Alias Matching" on page 34 for
more information.

49

Typedown Search Results

The results of a Typedown search (in this case looking for a place in the US
beginning with "camb") are returned in a picklist similar to this:

As this is the first stage of a Typedown search, every match is an expandable
item.

Every item in a Typedown picklist precisely matches what you have typed in so
far.

Single Line Search Results

The results for a Single Line search (in this case, on an Australian street name
and state code) are returned in a picklist similar to this:

50

Selecting a Picklist Item

There are a number of ways to select a picklist item:

l Double-click the item.

l Highlight the item and click the Select button.

l Highlight the item and press Enter.

l Type enough letters in the Select item box (which replaces the Enter search
box) to identify the item you want, then click Select or press Enter.

Order of Picklist Items

In Single Line, picklist items are displayed in match percentage order, with the
highest at the top of the list, then sorted by address.

Displayed Postcodes

If there is only one postal/ZIP code which covers the whole of a picklist item, it is
displayed in the picklist. However, if a street or other expandable item contains
more than one postal/ZIP code, the postal/ZIP codes are not displayed. Select the
item to see the postal/ZIP codes available.

51

Returning An Unrecognised Address
When you enter property information, you can return an unrecognised address by
pressing Ctrl+Enter. For example, using GBR data:

1. Click the Typedown button to use the Typedown facility. Alternatively, you can
select Typedown from the Searchmenu, or press Ctrl+T.

2. Type PA16 9LZ into the Enter postcode or place box and press Enter. When
the street address is displayed, press Enter again to display a list of
premises.

QAS Pro returns two matches, and identifies the second match as an even
range:

3. Type 28 into the Enter building number/name or organisation box.

The picklist area displays the following informational prompt:

Although the address you typed is not valid, and the suggestion of the
highlighted prompt at the bottom of the screen is to 'Use another search', you
can press Ctrl+Enter to return the full address.

4. For the purpose of this example you are confident that the input address is
correct. Press Ctrl+Enter to return the address to the address edit screen.

The address edit screen will display a warning that the returned address has
not been verified.

52

QAS Pro will not display the Ctrl+Enter prompt if it has been disabled by
your system administrator. See the Help program for further details.

Address Edit Screen
When you select an address from a picklist, the address is returned to the address
edit screen, which replaces the picklist in the Results area.

The format of the address edit screen depends on the layout you select (see
"Selecting An Address Layout" on page 56). If the current dataset has additional
DataPlus information, the screen will have two tabs labelled 'Address' and
'DataPlus' in the lower left-hand corner. See "Retrieving DataPlus Information" on
page 37 for more details.

Once you have a full address, you can edit it directly on this screen if you wish by
clicking in the boxes or using the cursor keys. However, editing a postally correct
retrieved address is not recommended.

You may prefer an address element to be on the next line. However, you cannot
transfer it to the second line by pressing Enter. This is because pressing Enter is
the same as pressing the Accept button, and causes the address to be pasted to
the underlying application as it is. Instead, the command to insert a hard return
(that is, to move all the text to the right of the cursor position on to the next line) is
Ctrl+Enter.

Setting QAS Pro Options
There are a number of options that you can specify on the QAS Pro user interface.
As well as choosing whether to view or hide the menu bar, toolbar, partial
address bar, and informational prompts, you can:

l choose a search method;

l change the searching options;

l specify the dataset you want to search with (if you have more than one
dataset installed);

l select the address layout that you want to work with.

53

It is possible to control the options that a user can change with the functionality
flags used in the call to QAProWV_UIStartup, and also in the User Interface
Options pane on the Configuration Editor. Therefore, you might not be able to
change some of these options from the QAS Pro User Interface.

Selecting A Search Method

There are several search methods in QAS Pro. It is easy to switch between them
as necessary.

To select Typedown searching:

Either select Typedown from the Searchmenu, press Ctrl+T or click the
Typedown search toolbar button: .

Each of these actions calls the function QAProWV_UISetFlags (see page 171)
with the qaattribs_TYPEDOWNSEARCH flag.

To select Single Line searching:

Either select Single Line from the Searchmenu, press Ctrl+S or click the Single
Line search toolbar button:

Each of these actions calls the function QAProWV_UISetFlags (see page 171)
with the qaattribs_SINGLELINESEARCH flag.

To select Key searching:

Either select Key Search from the Searchmenu, press Ctrl+K or click the Key
Search toolbar button: .

Each of these actions calls the function QAProWV_UISetFlags (see page 171)
with the qaattribs_KEYFINDERSEARCH flag.

When you start up the QAS Pro API, the search method will default to whatever
was used last, or to the flag that has been set with QAProWV_UIStartup (see
page 173). If the flag qaattribs_NOCHANGEMODE has been set, you cannot
change the search mode from the user interface.

54

Setting The Search Options

There are a number of advanced options that can be set for each searching
method. To view the Options dialog, selectOptions… from the Searchmenu.

Selecting A Dataset

You can select which installed dataset to search on using the Dataset list.

Either click on the arrow to the right of the Dataset list, or press Alt+D followed by
the arrow down cursor key to see the list of available datasets.

This action performs the equivalent of calling the following functions:

Primary API Functions UI API Functions

QA_GetDataCount QAProWV_UICountryCount

QA_GetData QAProWV_UIGetCountry

QA_GetActiveData QAProWV_UIGetActiveCountry

To select a dataset, either click on it or use the cursor keys to highlight it and
press Enter. This performs the equivalent of calling the following functions:

Primary API Function UI API Function

QA_SetActiveData QAProWV_UISetActiveCountry

A dataset can be selected by pressing Ctrl+Shift and typing in the first letter, or
couple of letters of the dataset code to select a dataset. For example,
Ctrl+Shift+DN selects the Denmark dataset (if the Denmark dataset is installed).

55

If a different dataset is selected in the middle of a search, the current search is
stopped. The search term you entered is retained in readiness for a new search
using the new dataset.

Selecting An Address Layout

An address layout is a collection of settings that determine how the final address
is formatted when you complete a search in QAS Pro.

For example, a layout could specify that the address will be on five lines, each of
width 50 characters, with the town and postal/ZIP code always on the fourth and
fifth lines respectively.

Each dataset comes pre-configured with a standard address layout that follows
appropriate standards.

When QAS Pro is started, it automatically uses the default layout for the dataset
that is selected. See the relevant Data Guide for details on the standard layout.
However, you can have several layouts set up for each dataset. See "Overview"
on page 185 for full details of creating and setting up new layouts.

Click on the Select layout button or choose Select layout... from the Viewmenu
to see a list of available layouts for the currently selected dataset.

This action performs the equivalent of calling the following functions:

Primary API Functions UI API Functions

QA_GetLayoutCount QAProWV_UILayoutCount

QA_GetLayout QAProWV_UIGetLayout

QA_GetActiveLayout QAProWV_UIGetActiveLayout

To select another layout, either click on the layout name to highlight it and click
OK, or double-click on the layout name, or use the cursor keys to move to the
layout name and press Enter. This performs the equivalent of calling the following
functions:

Primary API Function UI API Function

QA_SetActiveLayout QAProWV_UISetActiveLayout

56

The Preview area at the bottom of the Select layout dialog shows the address
format of any layout that you highlight.

When you create a layout, you can set the layout comment that appears at the
bottom of the Select Layout dialog using the Comment setting (see "Output
Address Format Settings" on page 194).

57

QAS Healthcoder

QAS Healthcoder is a layer of functionality that sits on top of QAS Pro and
contains additional information and features that may be of use to the health
sector.

If you are using QAS Healthcoder, the following functionality is accessible by
default:

l The Health DataPlus set

l ZZ Postcodes.

For more specific information on the QAS Healthcoder functionality, please see
the QAS Pro Getting Started Guide. For more information on integrating QAS
Healthcoder, see Using QAS Healthcoder (below).

Using QAS Healthcoder

If you are integrating QAS Healthcoder rather than QAS Pro, there are some
changes that need to be made to the configuration files. If you are not using QAS
Healthcoder for your integration, then this section can be skipped.

To return ZZ Postcodes, QAS Healthcoder uses a feature called AddressBook. In
order for AddressBook to work, three settings in the configuration file need to be
set. In QAS Pro Plug and Go, these settings are automatically set up by the
installer, but if you are using the API, you have to ensure these are set yourself.

You may want to change these files (for instance if you do not wish to use the zz
prefix for ZZ Postcode searching). You can do this by opening your configuration
file (QAWSERVE.INI) in a non-formatting text editor such as Notepad under
Microsoft Windows or vi under UNIX, and add the setting in the [QADefault]
section. The three additional settings are formatted as follows:

59

AddressBook=Yes [or] No
+<search prefix>:<data file name>
AddressBookData=<file location>

In the majority of cases, the settings you should use will look like this:

AddressBook=Yes
+zz:zzwv.abk
AddressBookData=C:\Program Files\QAS\QAS Healthcoder

AddressBook

The default for this setting in QAS Pro is No. The API installer for Healthcoder will
set it to Yes for use with AddressBook.

+<search prefix>:<data file name>

Type your chosen search prefix and data file name, preceded with a '+' sign, on
the line following the configuration setting. The search prefix is the combination of
characters that you use to tell QAS Healthcoder that you are undertaking an
AddressBook search. It cannot be more that four characters long.

It is recommended that you choose a search prefix that would not be found in
standard QAS Healthcoder searching, because it will be used solely for
AddressBook. For example, if you set the search prefix to be "99", any search
beginning with 99 will tell QAS Healthcoder to look in the AddressBook data file.
You would not be able to look for a premise such as '99 Birmingham Road' unless
you specifically turn off AddressBook.

For ZZ Postcodes it is recommended you use "zz" as the AddressBook prefix.

After the search prefix, type a colon and then the name of the data file you want to
access. The supplied ZZ Postcode file name is "zzwv.abk".

60

AddressBookData=<file location>

The AddressBookData ini setting allows you to set the file location of the ZZ
AddressBook file. Use this setting if you have the AddressBook file in a nondefault
location.

61

Data Types

There are a few Experian QAS-specific data types which appear in the
documentation and need some explanation. These types define the parameters
that the functions take and values they return.

These can be split into three categories: the values that are returned by the
functions, the parameters that go into the functions, and the parameters you get
out of the functions.

Function Return Values

QAS Pro data type Description Equivalent 'C' data type

INTRET integer int

LONGRET long integer long

VOIDRET no return value void

Parameters (Input)

QAS Pro data type Description Equivalent 'C' data type

STRVAL string char *

INTVAL integer int

LONGVAL long integer long

VOIDARG no arguments void

63

Parameters (Output)

QAS Pro data type Description Equivalent 'C' data type

STRREF string char *

INTREF integer int *

LONGREF long integer long *

Calling Functions From Languages Other Than C
Whilst C is the language most commonly used when working with these API
functions, it is possible to integrate the API with other programming environments.
There are, however, a few points which you should note. These are:

l NULL Termination

l Padding

l Passing by Value or by Reference

NULL Termination

QAS Pro API is written in the C programming language. In C, all strings are
expected to end with the NULL character (i.e. NULL terminated), which has the
absolute value 0 (zero), not ASCII '0'.

For all functions in the API that accept parameters of the type STRVAL, these
parameters must be NULL terminated. Furthermore, all return parameters of type
STRREF will be NULL terminated.

64

Passing By Value Or By Reference

In general C programming, function parameters may be passed either by value or
by reference.

You must pass a parameter in the way the function expects you to pass it. If you
pass a parameter by value when the function is expecting it to be passed by
reference then this might crash your program and will certainly produce incorrect
results.

l In C programming, strings are always passed by reference, whether they are
input or output parameters. However, this is not true of all languages, and
strings may be passed by value in the language you are using.

l Numbers are passed by value when they are inputs to the function. They are
passed by reference when they are outputs from the function.

Returned Strings

When passing a buffer to an API function parameter that returns a string, the next
parameter normally defines the size of the buffer passed. The following example
demonstrates this type of function:

INTRET QA_GetActiveData (INTVAL viHandle,

STRREF rsDataID,

INTVAL viDataIDLength);

Here, the parameter viDataIDLength is the length of the buffer passed with
rsDataID.

If the buffer length parameter is zero, then the API function will not attempt to
populate the buffer with the return string. The parameter that receives the buffer
can optionally be passed NULL in combination with a zero buffer length, if the
integration language supports this.

If the buffer length parameter is greater than zero, then the integrator should
ensure that the buffer size and is large enough to receive the returned string. If
this is not the case, then truncation will occur, and will be logged in the error log
file (see "Error Logging Settings" on page 210).

65

Example Of Data Types
This example uses the function QA_GetData (see page 94).

This is how the function prototype looks in the documentation:

INTRET QA_GetData (INTVAL viHandle,

INTVAL viDataOffset,

STRREF rsDataID,

INTVAL viDataIDLength,

STRREF rsName,

INTVAL viNameLength);

The parameters viHandle and viDataOffset are inputs to the function (in the form
of integers) and thus are passed by value. Similarly, the parameters
viDataIDLength and viNameLength are also passed by value as they are inputs
to the function in the form of integers. The parameters rsDataID and rsName are
output parameters (in the form of strings), and consequently are passed by
reference.

In addition,QA_GetData returns a status value indicating either the successful
execution of the function, or whether an error has occurred (in the form of an error
code).

This function can be written in native C as:

int QA_GetData (int viHandle,

int viDataOffset

char *rsDataId,

int viDataIDLength,

char *rsName,

int viNameLength);

66

Primary API Reference

Pseudocode Example Of QAS Pro API
This section provides an overview of how a program using the QAS Pro API works
on a conceptual level. The pseudocode used is programming language
independent.

The example below uses many of the QAS Pro API functions, so that you can see
how they work together. In practice, however, you might not want or need to use
every function.

The pseudocode does not include all of the available functions.

Six functions are described in the pseudocode. The main function starts an
instance of the API, and gives the user a choice of performing a Single Line or
Typedown search. It then frees resources after each result has been retrieved.
Each search recursively calls five further functions: Display Error, which retrieves
and displays the message associated with the returned error code; User Action,
which displays prompts (commonly an instruction as to what should be entered by
the user); Display Results, which retrieves picklists of results from the search;
Select Results, which allows the user to step into picklist items; and Return
Address, which formats and returns the final address, using the rules specified in
the active layout.

Main Function

The primary API is instance based, where each instance is referenced with a
handle. To create a new instance of the API, the function QA_Openmust be
called and the unique handle that it returns used with subsequent API calls. If
multiple instances of the API are required, such as for use with multithreading,
then QA_Open needs to be called multiple times.

Open an instance of the API [QA_Open]

67

As with all API calls, the open could fail for various reasons. The most common
reasons for this to occur are that the product is not installed or configured
properly. If open fails, address matching will not be available. When writing
integrations of the primary API, it will be useful to enable error logging (see "Error
Logging Settings" on page 210).

For brevity in the pseudocode we will leave out the error checking for each API
function call. However in an integration all API calls should check the error
returned.

If open failed

Call Display error

close API instance [QA_Close]

shutdown API [QA_Shutdown]

exit procedure

End If

Once an open has been performed, the settings that are going to be used should
be applied to the instance. The user may or may not be able to control which
dataset and search engine to use. Both of these should be set before searching
begins. The active dataset and search engine can be changed between searches
if required.

set active dataset to search upon [QA_SetActiveData]

set engine to use for searching [QA_SetEngine]

The layout to be used for formatting will need to be set, although this defaults to
an internal layout that will be valid but probably not suitable. It is wise to set the
active dataset before choosing the layout to use with formatting, as some layouts
may only be defined for individual data sets.

Any engine options, such as search timeouts or picklist thresholds should also be
set at this point if the default values are not desired.

set layout to use for formatting [QA_SetActiveLayout]

set engine options [QA_SetEngineOption]

The recommended method for handling searching with the API is to recursively
display any picklist results, and then allow the user to either search upon the
results further, or to step into a result until the user has the address that they
require. Formatting can then be applied, and the address returned.

Repeat

68

The results should be displayed before the search is performed, as there may
be some information returned to the user by the API before searching. This is
commonly done by the typedown search engine.

Call Display results

There are two essential requests that a user can make that need to be
handled. The first is giving some text to search upon. The second is to select
an item to either step into or format. Other actions can be coded at the
integrators discretion, such as stepping out of a result to go back, or to exit the
address searching.

Call User action

If action was search text

search with text [QA_Search]

Else If action was to select an item

Call Select Result

End If

Until user has obtained address

After a search has been completed, it is essential to call the end search function
before starting another in the instance.

end the search [QA_EndSearch]

Once all address searching has been performed with the instance, the instance
should be closed.

close the instance [QA_Close]

If no more instances are required, the API needs to be shutdown, which will close
all instances anyway.

shutdown the API [QA_Shutdown]

Display Error Function

Almost every primary API function call returns an error code which should be
checked. If an error occurs then the message associated with the returned error
code can be retrieved and displayed to the user.

retrieve error message [QA_ErrorMessage]

display error message to user

Return to calling function

69

User Action Function

In order to aid the user when they are interacting with the integration, the Primary
API can return prompts to display to the user. These will commonly be an
instruction of what should be entered, such as 'Enter postcode or place' when
using the typedown engine at the beginning of a search. The prompt should be
displayed to the user in some manner before requesting input.

In order to aid the user when they are interacting with the integration, the Primary
API can 'return' (codes) prompts to 'display' (typed) to the user. These will
commonly be an instruction of what should be entered, such as Enter postcode or
place when using the typedown engine at the beginning of a search. The prompt
should be displayed to the user in some manner before requesting input.

retrieve prompt text [QA_GetPrompt]

display prompt to user

obtain action from user

Return to calling function

Display Results Function

To display results, first obtain a count of the available results and then retrieve
and display each one. The integration may choose to display different type of
results in different ways. For example it is common to indicate to the user which
results can be stepped into, or which results are full addresses that will be used if
selected.

get a count of available results [QA_GetSearchStatus]

For Each result

retrieve the result [QA_GetResult]

display the result to the user

End For

Return to calling function

70

Select Result Function

When a user selects a result the action that the integration should take is
determined by the attributes associated with the result in question. The two most
important attributes are whether the result can be stepped into, and whether it is a
final address. Other result attributes may be handled at the integrators discretion.

get the attributes of the result [QA_GetResult]

If result can be stepped into

step into result [QA_StepIn]

Else If result is a final address

Call Return address

End If

Return to calling function

Return Address Function

When a user has selected a final address, it should be formatted and returned in
the appropriate manner. The address will be formatted using the rules specified in
the active layout.

format result and retrieve line count [QA_FormatResult]

For Each formatted line

retrieve the line text [QA_GetFormattedLine]

return text to the user

End For

Return to calling function

Handling Errors
Every Primary API function except for QA_Shutdown returns an integer error code
value. This value will be within the following ranges:

0 Function succeeded
less than 0 Function encountered errors

71

Experian QAS strongly recommends that every function call is checked for errors.
Although the majority of errors are generated by mistakes in an integration which
would be picked up through testing, some are unpredictable. For example, the
failure of a client-server link, running out of memory, or a data file expiry.

All Primary API functions will set their output parameters to defined values if an
error occurs. Integer output variables will be set to zero, and string output
variables will be set to blank.

The LogErrors configuration setting is a useful way of locating the cause of an
error. Experian QAS recommends that you enable error logging while writing and
debugging an integration. See "Error Logging Settings" on page 210 for more
information.

The QA_ErrorMessage function provides a textual description of error codes
returned from the API. See page 86 for more information.

The handling of errors should typically be split into two categories. These are
described below.

1. An error returned from a call to QA_Open. This means that address capture is
unavailable.

This could be caused by many things, such as configuration or administration
errors. Experian QAS recommends that you call QA_Shutdown and locate
the source of the problem using the LogErrors setting.

2. An error returned after a call to QA_Open because, although address capture
is available, the current search has failed for some reason. This could be due
to a lack of resources, or to an administration error. Experian QAS
recommends that you call QA_EndSearch to end the current search.

Note that you do not have to shut down the system, and that address capture
may still be available. For example, a client-server link may have failed,
losing the current search. In that case attempting a new search would
reestablish the connection and your integration would continue functioning
correctly. See "Error Logging Settings" on page 210 for more information.

If you are writing a client-server integration of Pro, it is very important to react to
errors after QA_Open as described above. An error will be returned from an API
function if a connection to the server in use is lost, as the search results will not be
retrievable.

72

API Instances
The Primary API is based on the concept of instances. An instance of the API is
created through calling QA_Open, and is destroyed by calling QA_Close.Once
an instance is created, it is referenced through an integer handle that is returned
from QA_Open. All subsequent functions that use the instance must be passed
through this handle. Once all instances have been closed using QA_Close, the
API should be shut down using QA_Shutdown.

Each instance of the API that is created is independent from other instances. Any
action that is performed upon one instance will not affect that state of another
instance. Actions can be performed upon separate instances simultaneously.

If you want to have a multithreading integration that performs multiple searches
concurrently, you should create multiple instances of the API. Each thread will
typically perform the following actions:

l Create an instance using QA_Open

l Perform one or more searches

l Close the instance using QA_Close

Once all threads have finished, call QA_Shutdown. It would be uncommon for a
single-threaded integration to require multiple instances of the API.

Flags Returned
Many API functions, such as QA_GetSearchStatus, pass information back using
'flags'.

Flags are a means of communicating multiple pieces of information back to the
caller using a single parameter.

The value returned consists of multiple values ORed together.

Example:

QA_GetResult returns information about a picklist item. If a picklist item is
informational and can be stepped into, the following flags are returned:

qaresult_CANSTEP 4

qaresult_INFORMATION 1024

73

The value of rlFlags will be:

4 OR 1024 = 1028.

To check for a specific flag the integrator should AND the returned set of flags with
the flag they wish to test for. If the result is zero, the flag was not present. If the
result is non-zero, the flag was present.

Example:

Testing for qaresult_CANSTEP (4) in returned value 1028:

1028 AND 4 = 4 (non-zero)

Therefore the picklist item can be stepped into.

Example:

Testing for qaresult_ALIASMATCH (8) in returned value 1028:

1028 AND 8 = 0 (zero)

Therefore the picklist item is not an alias match.

In C:

if (rlFlags & 1024)

{

…

}

Some functions have accompanying 'Detail' functions; for example,QA_
GetResult has the accompanying function QA_GetResultDetail. These allow the
caller to inquire about a single specific attribute and is useful for languages that
cannot perform bitwise operations such as AND, or for integrations that require
extra information.

If rsDetail or rlDetail are not used in a particular call to a 'Detail' function, it will
return a blank string or zero as appropriate.

74

Example:

QA_GetResultDetail (iHandle,

iResult,

qaresultint_ISINFORMATION,

&lDetail,

NULL,

0);

This will return qavalue_TRUE or qavalue_FALSE in parameter lDetail,
depending on whether the given picklist item is informational or not.

Automatic Stepping And Formatting
To help you locate addresses faster and more effectively, the Primary API
supports automatic stepping into and formatting of picklist items generated from
an initial search. For example, if you were to perform a search that generated only
a single exact result, the integration can automatically step into that item instead
of prompting you to do it manually, which speeds up the address capture process.

Automatic stepping in and/or formatting is not required for a successful
integration, and it is therefore at your discretion whether you act upon the
returned flags.

The Primary API will output one of the following four flags from the function QA_
GetSearchStatus.

The flag qastate_AUTOSTEPINSAFE is returned when a search or step in has
produced a picklist containing only one match that itself can be stepped into.
Experian QAS recommends that the integration should call QA_StepIn upon the
first item in the picklist when this flag is returned, as it will speed up the address
capture process.

The flag qastate_AUTOSTEPINPASTCLOSE is returned when a search or step in
has produced a picklist containing only one exact match, and also multiple non-
exact matches. You may choose to call QA_StepIn on the first item in the picklist
when this flag is returned, as it may speed up the address capture process.

75

The flag qastate_AUTOFORMATSAFE is returned when a search or step in has
produced a picklist containing only a single match that is a final address item. If
the integration allows you to go back to the picklist after selecting a final address,
then Experian QAS recommend thatQA_FormatResult should be called upon
the first picklist item and the address returned.

The flag qastate_AUTOFORMATPASTCLOSE is returned when a search or a
step in has produced a picklist containing only one exact match that is a final
address item, and also multiple non-exact matches. If the integration allows you to
go back to the picklist after selecting a final address, then you can choose to call
QA_FormatResult on the first item in the picklist and on the address returned.

Asynchronous Searching
The Primary API supports two different threading models for performing searches:
synchronous and asynchronous.

Synchronous searching is the default threading model, and is used by the
majority of integrations. Using synchronous searching, the functions QA_Search
and/or QA_StepIn return to the caller once the search has been completed. You
can then immediately access the results.

Asynchronous searching is an alternative threading model where the calls to the
searching functions are returned as soon as the search has begun. The search is
performed using a background thread.

Asynchronous searching is not available for single threaded versions of the
Primary API, as supplied for UNIX platforms without the required POSIX
multithreading standard.

There are three engine options that control asynchronous searching:

1. The qaengopt_ASYNCSEARCH engine option allows the integrator to control
whether the initial search using QA_Search on the single line engine is
asynchronous. This is the most commonly used option for asynchronous
searching.

2. The qaengopt_ASYNCSTEPIN engine option allows the integrator to control
whether stepping into picklist items using QA_StepIn is asynchronous.

76

3. The qaengopt_ASYNCREFINE engine option allows the integrator to control
whether picklist refinement using QA_Search after the first result for the
single line engine, and all searches using the typedown engine, are
asynchronous. This will be used less frequently, as picklist refinement is a fast
process.

The search must be complete before you can retrieve the results. The caller
needs to check periodically whether the search has been completed by calling
QA_GetSearchStatus, and checking whether the flag qastate_
STILLSEARCHING is present. Typically, you should check every 100ms to see
whether the search has completed.

The following diagram demonstrates polling:

Asynchronous searching is useful, although not essential, for graphical user
interface integrations where the caller wants to be able to perform tasks while the
search is in progress, and does not want to use multithreaded code. For example,
this could be used to react to search cancel requests.

77

API Function Reference
The QAS Pro Primary API functions are split into the following groups. A full list of
the Primary API functions is provided below, along with details of where you can
find each one:

General Functions

QA_Open (see page 131)
Opens an instance of the API.

QA_Close (see page 84)
Closes an instance of the API.

QA_ErrorMessage (see page 86)
Translates error codes into descriptions.

QA_Shutdown (see page 141)
Closes down the API.

Common Search Functions

QA_SetEngine (see page 137)
Sets the current search engine to Typedown, Single Line, Verification or
Keyfinder.

QA_GetEngine (see page 97)
Retrieves the current search engine.

QA_SetEngineOption (see page 138)
Sets search engine-related attributes for the current engine.

QA_GetEngineOption (see page 98)
Retrieves the value for a particular engine-related attribute.

QA_GetEngineStatus (see page 100)
Retrieves the status current search engine.

QA_GetPrompt (see page 112)
Returns the prompt text to direct the user action.

78

QA_GetPromptStatus (see page 114)
Returns status information about the current prompt.

QA_Search (see page 133)
Performs a search.

QA_CancelSearch (see page 83)
Cancels a search in progress.

QA_EndSearch (see page 85)
Ends the current search, and resets all results.

QA_GetSearchStatus (see page 124)
Provides information about the state of a search. Can be called at any time.

QA_GetSearchStatusDetail (see page 127)
Provides detailed information about the state of a search. Can be called at any
time.

QA_StepIn (see page 142)
Steps into a picklist item.

QA_StepOut (see page 143)
Steps out of a picklist item.

Result Functions

QA_GetResult (see page 116)
Obtains limited information regarding a picklist item.

QA_GetResultDetail (see page 120)
Obtains detailed information regarding a picklist item.

QA_FormatResult (see page 89)
Selects a picklist item and applies formatting.

QA_GetFormattedLine (see page 102)
Returns a given formatted line.

QA_GetExampleCount (see page 101)
Returns the number of example addresses for the given dataset.

79

QA_FormatExample (see page 87)
Selects an example address and applies formatting.

Layout Functions

QA_GetLayoutCount (see page 106)
Retrieves the number of available layouts that can be used for formatting.

QA_GetLayout (see page 104)
Returns information about a given layout.

QA_GetActiveLayout (see page 93)
Returns the name of the layout currently in use for formatting returned addresses.

QA_SetActiveLayout (see page 135)
Sets the layout that will be used for formatting.

Dataset Functions

QA_GetDataCount (see page 96)
Provides a count of the available datasets.

QA_GetData (see page 94)
Provides information about a given dataset.

QA_GetActiveData (see page 92)
Returns the data ID of the dataset currently in use.

QA_SetActiveData (see page 134)
Sets the dataset to be searched on.

QA_GetLicensingCount (see page 107)
Provides a count of the total available data and dataplus sets.

QA_GetLicensingDetail (see page 109)
Provides detailed information about a given dataset.

System Functions

QA_GenerateSystemInfo (see page 91)
Generates information regarding the state of the system.

80

QA_GetSystemInfo (see page 130)
Interrogates the system information provided by QA_GenerateSystemInfo.

81

General Error Scenarios (All Functions)

Bad Parameter

One of the API parameters has been passed an invalid value. Use the
LogErrors configuration setting (see "Error Logging Settings" on page 210) to
determine where the problem lies.

Bad Handle

The parameter viHandle has been passed an invalid handle. This should only be
passed values returned from QA_Open that have not since been closed.

Server Error

An error has occurred on the server. This may be due to the server running out of
resource, or to connection issues. This error may be returned in a non client-
server integration if the 'server' side of the application runs out of resource, such
as memory.

Licensing Error

The active dataset you are attempting to use may not be licensed properly and
will return an error. Check that data is the data is correctly installed and licensed,
and use the LogErrors configuration setting to determine where the problem
lies.

See also "Handling Errors" on page 71 for more information about what to do in
response to an error.

82

QA_CancelSearch

Cancels a search that is still in progress. This can be called if using either
asynchronous or synchronous searching, although it is more common to use it
with asynchronous searching.

If cancelling a synchronous search, then this function will have to be called using
a separate thread created by the integration. If the search has finished before this
function is called, then nothing will happen.

Prototype

INTRET QA_CancelSearch (INTVAL viHandle,

LONGVAL vlFlags);

Arguments

viHandle Handle for this instance of the API
vlFlags Flags to control function behaviour

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The following flags, passed into vlFlags, can be used to specify how to stop a
search in progress (either to return immediately or to wait until the search has
been cancelled):

Symbolic Name Decimal
Value Description

qacancelflag_NONE 0 Returns immediately after
cancelling

qacancelflag_BLOCKING 1 Does not complete function until
the search has been successfully
cancelled

83

QA_Close

Shuts down an instance of the API that has been opened with QA_Open. Once an
instance has been closed, the instance handle will be invalid and cannot be
passed to subsequent API functions.

If the call to QA_Open failed, then the returned instance handle will be set to zero,
which can be safely used with this function.

If "Asynchronous Searching" (see page 76) is in use, then calling QA_Close will
safely cancel it before closing the instance.

Prototype

INTRET QA_Close (INTVAL viHandle);

Arguments

viHandle Handle to be closed

Return Value

Either: 0 if call is successful
Or: Negative error code

84

QA_EndSearch

Ends the search. This function is called once all search information has been
returned. It must be called before a new search is started.

If an asynchronous search is in progress, then calling QA_EndSearch will safely
cancel it before ending the search.

Prototype

INTRET QA_EndSearch (INTVAL viHandle);

Arguments

viHandle Handle for this instance of the API

Return Value

Either: 0 if call is successful
Or: Negative error code

85

QA_ErrorMessage

Used to translate an error code into a description.

Prototype

INTRET QA_ErrorMessage (INTVAL viError,

STRREF rsBuffer,

INTVAL viBufferLength);

Arguments

viError Error code to translate
rsBuffer Returned error description
viBufferLength Length of rsBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

86

QA_FormatExample

Each dataset has example addresses, which can be used to preview layouts. See
QA_GetExampleCount on page 101 for more information about example
addresses.

QA_FormatExample formats an example in the current active layout. Sample
address lines can be retrieved by calling QA_GetFormattedLine.

Prototype

INTRET QA_FormatExample (INTVAL viHandle,

INTVAL viExample,

STRREF rsComment,

INTVAL viCommentLength,

INTREF riLineCount,

LONGREF rlInfo);

Arguments

viHandle Handle for this instance of the API
viExample The index of the example to format
rsComment A comment describing the example address
viCommentLength The size of the rsComment buffer
riLineCount The number of lines that have been formatted
rlInfo Information about the formatted example

Return Value

Either: 0 if call is successful
Or: Negative error code

The 'Zero' example number always exists and is a blank example address,
useful for getting the number of layout lines.

87

Comments

The parameter viExample should be passed an index into the count of example
address from QA_GetExampleCount, between 0 and the count - 1.

The parameter rlInfo can return the following flags ORed together:

Symbolic Name Decimal
Value Description

qaformat_OVERFLOW 1 There are not enough address
lines configured to display the
full address

qaformat_TRUNCATED 2 Truncation has occurred on one
or more address lines in the final
address

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Index The value passed to parameter viExample was not a valid
example address offset. The range should be between 0 and
the count of example addresses - 1 from QA_
GetExampleCount.

Bad Layout The active layout that is set for the instance is invalid. The list
of valid layouts can be obtained by using the QA_
GetLayoutCount and QA_GetLayout functions. A layout
may be defined for a specific dataset only, and so changing
the active dataset may invalidate the active layout.

88

QA_FormatResult

Selects a picklist item and applies the formatting routines to it. This is done
according to the current active layout.

Prototype

INTRET QA_FormatResult (INTVAL viHandle,

INTVAL viResult,

STRVAL vsExtra,

INTREF riLineCount,

LONGREF rlInfo);

Arguments

viHandle Handle for this instance of the API
viResult The picklist item to be formatted
vsExtra Extra text to add to the formatted address
riLineCount The number of lines that have been formatted
rlInfo Information about the formatted result

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viResult should be passed an index into the count of available
picklist items from QA_GetSearchStatus or QA_GetSearchStatusDetail,
between 0 and count - 1.

The parameter rlInfo can return the following flags ORed together:

89

Symbolic Name Decimal
Value Description

qaformat_OVERFLOW 1 There are not enough address
lines configured to display the
full address.

qaformat_TRUNCATED 2 Truncation has occurred on one
or more address lines in the final
address.

The parameter vsExtra allows you to pass through text that you want to add to the
formatted address. This is typically used when you have refined on text that is not
in the data, but that you wish to use in the final address.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Out of Sequence The API cannot format a result of a picklist if a search has not
yet been performed.

Bad Index The value passed to parameter viResult was not a valid
picklist item offset. The range should be between 0 and the
picklist result count - 1.

Bad Layout The active layout that is set for the instance is invalid. The list
of valid layouts can be obtained by using the QA_
GetLayoutCount and QA_GetLayout functions. A layout
may be defined for a specific dataset only, and so changing
the active data set may invalidate the active layout.

90

QA_GenerateSystemInfo

Generates information regarding the state of the system. You can then interrogate
this with the function QA_GetSystemInfo.

Prototype

INTRET QA_GenerateSystemInfo (INTVAL viHandle,

INTVAL viType,

INTREF riCount);

Arguments

viHandle Handle for this instance of the API
viType Type of information to generate
riCount Count of lines generated

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The following values can be passed to viType:

Symbolic Name Decimal
Value Description

qasysinfo_SYSTEM 1 Generate the current state of the
system

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be used
by one thread at any point in time.

91

QA_GetActiveData

Obtains the data ID of the active dataset. This is the dataset that will be used to
search on.

The data ID is a short string that uniquely identifies the dataset. The available
data IDs for all installed datasets can be returned using QA_GetDataCount and
QA_GetData.

Prototype

INTRET QA_GetActiveData (INTVAL viHandle,

STRREF rsDataID,

INTVAL viDataIDLength);

Arguments

viHandle Handle for this instance of the API
rsDataID Buffer returning data ID of active dataset
viDataIDLength Length of rsDataID

Return Value

Either: 0 if call is successful
Or: Negative error code

Error Scenarios

Busy
Handle

The parameter viHandle has been passed a handle that is already
in use in another thread. Each handle can only be used by one
thread at any point in time.

92

QA_GetActiveLayout

Retrieves the layout that is currently active. This will be used for formatting the
returned address.

Prototype

INTRET QA_GetActiveLayout (INTVAL viHandle,

STRREF rsName,

INTVAL viNameLength);

Arguments

viHandle Handle for this instance of the API
rsName Name of layout
viNameLength Length of rsName

Return Value

Either: 0 if call is successful
Or: Negative error code

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

93

QA_GetData

Returns information about a given dataset. You can call this multiple times to get
information about all available datasets, which can be manually specified using
the the DataMappings setting in the qawserve.ini file (see "Dataset Installation
Settings" on page 189).

The function QA_GetDataCount must be called before this function.

Prototype

INTRET QA_GetData (INTVAL viHandle,

INTVAL viDataOffset,

STRREF rsDataID,

INTVAL viDataIDLength,

STRREF rsName,

INTVAL viNameLength);

Arguments

viHandle Handle for this instance of the API
viDataOffset Index into dataset count
rsDataID Buffer returning the ID of the dataset
viDataIDLength Length of rsDataID
rsName Buffer returning dataset
viNameLength Length of rsName

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viDataOffset should be passed an index into the available data
count from QA_GetDataCount, between 0 to the count - 1.

94

The data ID returned from the parameter rsDataID is a short string identifying the
dataset. This can be passed to QA_SetActiveData in order to change the current
dataset being searched upon.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Out of Sequence The function QA_GetDataCount must have been called prior
to this function.

Bad Index The value passed to parameter viDataOffset was not a valid
data offset. The range should be between 0 and the count of
data - 1 from QA_GetDataCount.

95

QA_GetDataCount

Returns a count of the available datasets, which can be manually specified using
the DataMappings setting in the qawserve.ini file.

This must be called before the data accessor function QA_GetData is used.

The count returned by this method is the number of separate datasets that can be
passed to QA_SetActiveData, which sets the active dataset to be searched on.

Prototype

INTRET QA_GetDataCount (INTVAL viHandle,

INTREF riCount);

Arguments

viHandle Handle for this instance of the API
riCount Count of datasets

Return Value

Either: 0 if call is successful
Or: Negative error code

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

96

QA_GetEngine

Retrieves the current search engine. Refer to "Searching With QAS Pro" on page
25 for information about the differences between the three search engines and
how to use them.

Prototype

INTRET QA_GetEngine (INTVAL viHandle,

INTREF riEngine);

Arguments

viHandle Handle to the API
riEngine The current active search engine

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The possible search engines that can be returned from parameter riEngine are as
follows:

Symbolic Name Decimal
Value Description

qaengine_SINGLELINE 1 Single line engine

qaengine_TYPEDOWN 2 Typedown engine

qaengine_KEYFINDER 5 Keyfinder engine

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

97

QA_GetEngineOption

Retrieves the current settings used with a search engine.

Prototype

INTRET QA_GetEngineOption (INTVAL viHandle,

INTVAL viEngOption,

LONGREF rlValue);

Arguments

viHandle Handle for this instance of the API
viEngOptionEngine option to be returned
rlValue Value for the given engine option

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The possible engine options that can be returned are listed below:

Symbolic Name Decimal
Value Description

Options

qaengopt_ASYNCSEARCH 1 Single line searches will be
asynchronous.

qaengopt_ASYNCSTEPIN 2 Calls to QA_StepIn will be
asynchronous

qaengopt_ASYNCREFINE 3 Picklist refinement will be
asynchronous

qaengopt_THRESHOLD 6 Get the current picklist size
threshold

98

Symbolic Name Decimal
Value Description

qaengopt_TIMEOUT 7 Get the current search timeout
(ms)

qaengopt_SEARCHINTENSITY 8 Get the current search intensity

The engine option types qaengopt_ASYNCSEARCH, qaengopt_ASYNCSTEPIN,
and qaengopt_ASYNCREFINE will return one of the following values in
parameter rlValue:

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

The engine option type qaengopt_SEARCHINTENSITY will return one of the
following values in parameter rlValue.

Search Intensity Values

qaintensity_EXACT 0 Exact searching

qaintensity_CLOSE 1 Close searching

qaintensity_EXTENSIVE 2 Extensive searching

The other engine option types will return an integer value.

The engine options that control asynchronous searching are as follows:

l qaengopt_ASYNCSEARCH

l qaengopt_ASYNCSTEPIN

l qaengopt_ASYNCREFINE

These can only be used for multithreaded versions of the library: the single
threaded version of the library will not accept them. This is because they require
the API to create threads if the options are enabled.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

99

QA_GetEngineStatus

Retrieves the current status of a search engine. This allows you to check whether
a particular engine is available for the data mapping you have selected.

Prototype

INTRET QA_GetEngineStatus (INTVAL viHandle,

INTVAL viEngine,

INTRET riAvailable);

Arguments

viHandle Handle for this instance of the API
viEngine Engine to be selected
riAvailable Availability of the engine

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The possible search engines that can be passed to viEngine are:

Symbolic Name Decimal
Value Description

qaengine_SINGLELINE 1 Single line engine

qaengine_TYPEDOWN 2 Typedown engine

qaengine_KEYFINDER 5 Keyfinder engine

The parameter rlValue will return one of the following values:

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

100

QA_GetExampleCount

Returns the number of available example addresses for the current data set. The
example addresses can be formatted and retrieved using QA_FormatExample
and QA_GetFormattedLine.

Prototype

INTRET QA_GetExampleCount (INTVAL viHandle,

INTREF riExampleCount);

Arguments

viHandle Handle for this instance of the API
riExampleCount The count of example addresses that exist for the given dataset

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The Zero example number always exists and is a blank example address, useful
for obtaining the number of layout lines.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is already
in use in another thread. Each handle can only be used by one
thread at any point in time.

Bad Layout The active layout that is set for the instance is invalid. The list of
valid layouts can be obtained by using the QA_GetLayoutCount
and QA_GetLayout functions. A layout may be defined for a
specific dataset only, and so changing the active data set may
invalidate the active layout.

101

QA_GetFormattedLine

Returns the given formatted address line.

Pre-call Conditions

Either QA_FormatResult or QA_FormatExample must have been called for the
current search.

Prototype

INTRET QA_GetFormattedLine (INTVAL viHandle,

INTVAL viLine,

STRREF rsFormattedLine,

INTVAL viFormattedLineLength,

STRREF rsLabel,

INTVAL viLabelLength,

LONGREF rlContents);

Arguments

viHandle Handle for this instance of the API
viLine The layout line to return
rsFormattedLine The buffer to receive the formatted line
viFormattedLineLength The size of rsFormattedLine
rsLabel Label for the line
viLabelLength The size of rsLabel
rlContents Flags describing the contents of the line

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viLine should be passed an index into the count of formatted lines
from QA_FormatResult or QA_FormatExample, between 0 and the count - 1.

102

The parameter rsLabel will return the name of any individual address element
fixed to the line. If there are no elements (or more than one element) fixed to the
line, this will be blank.

The parameter rlContents can return the following flags ORed together:

Symbolic Name Decimal
Value Description

qaformatted_NAME 1 There are name elements fixed to
this line.

qaformatted_ADDRESS 2 There are address elements fixed
to this line.

qaformatted_ANCILLARY 4 There are ancillary elements fixed
to this line.

qaformatted_DATAPLUS 8 There are dataplus elements
fixed to this line.

qaformatted_TRUNCATED 16 Truncation occurred on this line,
due to the width being too small.

qaformatted_OVERFLOW 32 Some elements were lost from
this line, due to the width being
too small and not enough lines
being defined.

qaformatted_DATAPLUSSYNTAX 64 Dataplus is badly configured
upon this line due to invalid
syntax.

qaformatted_DATAPLUSEXPIRED 128 Dataplus is badly configured
upon this line as it has expired.

qaformatted_DATAPLUSBLANK 256 Dataplus is blank on this line as
there was no appropriate value in
the data to return.

Error Scenarios

Busy
Handle

The parameter viHandle has been passed a handle that is already in
use in another thread. Each handle can only be used by one thread at
any point in time.

Bad
Index

The value passed to parameter viLine was not a valid data offset. The
range should be between 0 and the count of data - 1 from QA_
FormatResult or QA_FormatExample.

103

QA_GetLayout

Returns information about the given layout. You can call this multiple times to get
a list of all layouts for the currently active dataset.

Pre-call Conditions

The function QA_GetLayoutCount should be called prior to this.

Prototype

INTRET QA_GetLayout (INTVAL viHandle,

INTVAL viLayout,

STRREF rsName,

INTVAL viNameLength,

STRREF rsComment,

INTVAL viCommentLength);

Arguments

viHandle Handle for this instance of the API
viLayout Layout to return
rsName Name of layout
viNameLength Length of rsName
rsComment Layout comment
viCommentLength Length of rsComment

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viLayout should be passed an index into the count of available
layouts from QA_GetLayoutCount, between 0 and the count - 1.

104

You can set the layout comment when you create a layout (see "Output Address
Format Settings" on page 194). You may choose to display this comment to users
when they change layout.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Index The value passed to parameter viLayout was not a valid data
offset. The range should be between 0 and the count of data
- 1 from QA_GetLayoutCount.

105

QA_GetLayoutCount

Retrieves the number of available layouts in the configuration file for the active
dataset.

Prototype

INTRET QA_GetLayoutCount (INTVAL viHandle,

INTREF riCount);

Arguments

viHandle Handle for this instance of the API
riCount Number of available layouts in the configuration file

Return Value

Either: 0 if call is successful
Or: Negative error code

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

106

QA_GetLicensingCount

Returns the total number of licensed datasets, including DataPlus sets, that are
available. This total includes all servers that the API is using. Data duplicated
across servers will be reported multiple times. This function can be used to report
the most serious warning that applies to the set of licensed data. This is useful to
check that there are no immediate or impending issues with the installed data,
without interrogating each set individually using QA_GetLicensingDetail.

If a count of datasets available to search with is required, use the QA_
GetDataCount function instead.

Prototype

INTRET QA_GetLicensingCount (INTVAL viHandle,

INTREF riCount,

LONGREF rlWarningLevel);

Arguments

viHandle Handle for this instance of the API
riCount The count of licensed datasets
rlWarningLevelWarning level for the set of licensed data

Return Value

Either: 0 if call is successful
Or: Negative error code

107

Comments

The parameter rlWarningLevel will return one of the following values (sorted in
increasing order of urgency and importance):

Symbolic Name Decimal
Value Description

qalicwarn_NONE 0 No licence warning

qalicwarn_DATAEXPIRING 10 A dataset is about to expire

qalicwarn_LICENCEEXPIRING 20 A licence is about to expire

qalicwarn_EVALUATION 30 Data is on an evaluation licence

qalicwarn_DATAEXPIRED 40 A dataset has expired

qalicwarn_
EVALLICENCEEXPIRED

50 An evaluation licence has expired

qalicwarn_
FULLLICENCEEXPIRED

60 A full licence has expired

qalicwarn_LICENCENOTFOUND 70 Licence information cannot be
found for a dataset

qalicwarn_DATAUNREADABLE 80 A dataset is not readable

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be used
by one thread at any point in time.

108

QA_GetLicensingDetail

Returns detailed information about a given licensed dataset. The count of
licensed datasets can be obtained from the function QA_GetLicensingCount.

Prototype

INTRET QA_GetLicensingDetail (INTVAL viHandle,

INTVAL viLicence,

INTVAL viType,

LONGREF rlDetail,

STRREF rsDetail,

INTVAL viDetailLength);

Arguments

viHandle Handle for this instance of the API
viLicence Index into count of licensed datasets
viType Type of information detail to return
rlDetail Integer detail
rsDetail String detail
viDetailLength Length of rsDetail

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viLicence should be passed an index into the count of licensed
datasets from QA_GetLicensingCount, between 0 and the count - 1.

If the symbolic name of the result detail type passed to viType is prefixed with
qalicencestr_ then a string will be returned through the rsDetail parameter. If the
symbolic name is prefixed with qalicenceint_ then an integer will be returned
through the rlDetail parameter.

109

The parameter viType is used to specify what piece of information you want to be
returned. It can take one of the following values:

Symbolic Name Decimal
Value Description

qalicencestr_ID 1 Returns the dataset name

qalicencestr_DESCRIPTION 2 Returns a brief description of what
the dataset represents

qalicencestr_COPYRIGHT 3 Returns the copyright information for
the dataset

qalicencestr_VERSION 4 Returns the version of the data

qalicencestr_BASECOUNTRY 5 Returns the data ID of the country to
which the dataset is an extension

qalicencestr_STATUS 6 Returns the string describing the
state of the data; for example if it is
about to expire.

qalicencestr_SERVER 7 Returns the server name of where
the dataset is being used

qalicenceint_WARNINGLEVEL 8 Returns the warning level for the
dataset. This can take one of the
values listed in the following table.

qalicenceint_DAYSLEFT 9 Returns the number of days left
before the dataset is unusable

qalicenceint_DATADAYSLEFT 10 Return the number of days left
before the data expires

qalicenceint_
LICENCEDAYSLEFT

11 Return the number of days left until
the dataset licence expires

The following warning levels can be returned for the qalicenceint_
WARNINGLEVEL detail type:

Symbolic Name Decimal
Value Description

qalicwarn_NONE 0 No licence warning

qalicwarn_DATAEXPIRING 10 The dataset is about to expire

110

Symbolic Name Decimal
Value Description

qalicwarn_LICENCEEXPIRING 20 The licence for the dataset is
about to expire

qalicwarn_EVALUATION 30 The data is on an evaluation
licence

qalicwarn_DATAEXPIRED 40 The dataset has expired

qalicwarn_
EVALLICENCEEXPIRED

50 The evaluation licence for the
dataset has expired

qalicwarn_
FULLLICENCEEXPIRED

60 The full licence for the dataset
has expired

qalicwarn_
LICENCENOTFOUND

70 Licence information cannot be
found for the dataset

qalicwarn_DATAUNREADABLE 80 The dataset is not readable

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

111

QA_GetPrompt

Returns the prompt text. This is a short sentence that can be displayed to prompt
the user to search using the appropriate address items. For example when
beginning a search using the typedown engine the prompt may be 'Enter place or
postcode'.

Prototype

INTRET QA_GetPrompt (INTVAL viHandle,

INTVAL viLine,

STRREF rsPrompt,

INTVAL viPromptLength,

INTREF riSuggestedInputLength,

STRREF rsExample,

INTVAL viExampleLength);

Arguments

viHandle Handle for this instance of the API
viLine The prompt line to be returned. Always pass 0.
rsPrompt Buffer to receive a prompt line
viPromptLength The length of the receive buffer
riSuggestedInputLength For future expansion
rsExample For future expansion
viExampleLength For future expansion

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The riSuggestedInputLength, rsExample and viExampleLength parameters
should be treated as any other parameter, except that any returned values should
be ignored for this release of QAS Pro.

112

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

113

QA_GetPromptStatus

Returns status information about the current prompt.

Prototype

INTRET QA_GetPromptStatus (INTVAL viHandle,

INTVAL viType,

INTREF riStatus,

STRREF rsStatus,

INTVAL viStatusLength);

Arguments

viHandle Handle for this instance of the API
viType Type of status information to receive
riStatus Integer status information
rsStatus String status information
viStatusLength Length of rsStatus

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

If the symbolic name of the result detail type passed to viType is prefixed with
qapromptstr_ then a string will be returned through the rsStatus parameter. If the
symbolic name is prefixed with qapromptint_ then an integer will be returned
through the riStatus parameter.

The parameter viType is used to specify what piece of information you want to be
returned. It can take one of the following values:

Symbolic Name Decimal
Value Description

qapromptint_DYNAMIC 2 Returns whether or not the
current prompt is dynamic. See
comments below.

114

The prompt status type qapromptint_DYNAMIC will return one of the following
values in parameter riStatus.

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

The prompt status affects the way in which a GUI should display the text box in
which the user enters the search string. A non-dynamic prompt should be blanked
after every call to QA_Search and QA_StepIn as the search text should not be
retained for the next stage. A dynamic prompt should only be blanked when QA_
StepIn is called, and should retain the text after a call to QA_Search.

The prompt status is designed to be obtained before the call to QA_Search, not
afterwards.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is already
in use in another thread. Each handle can only be used by one
thread at any point in time.

115

QA_GetResult

Obtains limited information about a given picklist item. The result count comes
from QA_GetSearchStatus.

The flags that are returned for a given picklist item indicate what actions can be
performed upon it; for example, you can only step into a result using QA_StepIn if
it has a qaresult_CANSTEP flag: otherwise an error will be returned.

Prototype

INTRET QA_GetResult (INTVAL viHandle,

INTVAL viResult,

STRREF rsDescription,

INTVAL viDescriptionLength,

INTREF riConfidence,

LONGREF rlFlags);

Arguments

viHandle Handle for this instance of the API
viResult Index into available results
rsDescription Result text that will be displayed in the picklist
viDescriptionLengthSize of rsDescription
riConfidence Confidence score of match
rlFlags Flags describing the type of the given picklist item

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viResult should be passed an index into the count of available
picklist items from QA_GetSearchStatus, between 0 and the count - 1.

The value returned in riConfidence is an indication of how good a match is. The
maximum value is 100%.

116

The parameter rsDescription returns the text of each result item. The result shows
only enough information for your users to be able to distinguish between different
matches. This element should be shown in a picklist to your users to allow them to
chose the result to step in to.

The parameter rlFlags can return the following flags ORed together. See "Flags
Returned" on page 73.

Symbolic Name Decimal
Value Description

qaresult_FULLADDRESS 1 You have reached the full
deliverable address and you can
now call QA_FormatResult (see
page 89).

qaresult_MULTIPLES 2 This item represents multiple
address lines.

qaresult_CANSTEP 4 This item can be stepped into,
using QA_StepIn.

qaresult_ALIASMATCH 8 The match is an alias. See "Alias
Matching" on page 34 for more
information.

qaresult_
POSTCODERECODED

16 The picklist item has a recoded
postcode. This is currently only
available with GBR data; please
refer to your Data Guide for more
information.

qaresult_
CROSSBORDERMATCH

32 The picklist item represents a
nearby area outside the strict
boundaries of the initial search.
This applies to bordering
localities, which are only relevant
to AUS data. If you are using AUS
data, refer to your Australia
Getting Started guide.

qaresult_DUMMYPOBOX 64 The item is the dummy PO Box
item. See comments below this
table.

qaresult_NAME 256 The picklist item is a Names
result.

117

Symbolic Name Decimal
Value Description

qaresult_INFORMATION 1024 The result item is an informational
prompt (see comments below).

qaresult_WARNINFORMATION 2048 Warning informational prompt
item (see comments below).

qaresult_INCOMPLETEADDR 4096 The dummy item in premise-less
countries (see comments below).

qaresult_
UNRESOLVABLERANGE

8192 A static range item that cannot be
expanded. This applies to USA
data and some European
datasets only (see comments
below).

A dummy PO Box picklist item is one that can be stepped into and contains PO
Box type addresses beneath. This should not be handled as a special case in an
integration, but a GUI may choose to use a different icon to display.

An informational picklist item is one that does not correspond to an address, but
instead conveys useful information to the user. Some informational prompts can
be stepped into, and so must never be filtered by the integration. The item itself
should not be handled as a special case in an integration, but a GUI may choose
to use a different icon to display.

A dummy item in a premise-less dataset will be returned for datasets where
premise-level detail is not available. When you step into a picklist item that
corresponds to a street, then this item may be returned in the resulting picklist.
The result description of this item will prompt the user to enter the building details.
This can then be used to refine the picklist and generate the desired address. The
item itself should not be handled as a special case in an integration, but a GUI
may choose to use a different icon to display.

An unresolvable range item will be returned for a premise range that cannot be
stepped into using QA_StepIn. Instead, you must type text to refine the picklist
further to generate the desired complete address. The item itself should not be
handled as a special case, but a GUI integration may choose a different icon to
display.

118

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Index The value passed to parameter viResult was not a valid
picklist item offset. The range should be between 0 and the
picklist result count - 1.

119

QA_GetResultDetail

Obtains limited information about a picklist item. The result count comes from QA_
GetSearchStatus.

Prototype

INTRET QA_GetResultDetail (INTVAL viHandle,

INTVAL viResult,

INTVAL viType,

LONGREF rlDetail,

STRREF rsDetail,

INTVAL viDetailLength);

Arguments

viHandle Handle for this instance of the API
viResult Index into available results
viType Type of result detail requested
rlDetail Returned detail integer
rsDetail Returned detail string
viDetailLength Length of rsDetail

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viResult should be passed an index into the count of available
picklist items from QA_GetSearchStatus, between 0 and the count - 1.

If the symbolic name of the result detail type passed to viType is prefixed with
qaresultstr_ then a string will be returned through the rsDetail parameter. If the
symbolic name is prefixed with qaresultint_ then an integer will be returned
through the rlDetail parameter.

120

The parameter viType is used to specify what piece of information you want to be
returned. It can take one of the following values:

Symbolic Name Decimal
Value Description

qaresultstr_DESCRIPTION 2 Return the text description for the
given item, suitable for
displaying in a picklist

qaresultstr_PARTIALADDRESS 3 Return the partial address for the
given result, formatted in a single
line. See comments below.

qaresultint_ISFULLADDRESS 13 Return whether the given item is
a full deliverable address and
you can now call QA_
FormatResult (see page 89).

qaresultint_ISMULTIPLES 14 Return whether the given item
represents multiple address
lines.

qaresultint_ISCANSTEP 15 Return whether the given item
can be stepped into, using QA_
StepIn.

qaresultint_ISALIASMATCH 16 Return whether the given item is
an alias. See "Alias Matching" on
page 34 for more information.

qaresultint_
ISPOSTCODERECODED

17 The picklist item has a recoded
postcode. This is currently only
available with GBR data; please
refer to your Data Guide for more
information.

qaresultint_
ISCROSSBORDERMATCH

18 Return whether the given item
represents a nearby area outside
the strict boundaries of the initial
search. This applies to bordering
localities, which are only relevant
to AUS data. If you are using
AUS data, refer to your Australia
Getting Started guide.

121

Symbolic Name Decimal
Value Description

qaresultint_ISDUMMYPOBOX 19 Return whether the given item is
the dummy PO Box item (see
comments below).

qaresultint_ISNAME 20 Return whether the given item is
a Names result.

qaresultint_ISINFORMATION 21 Return whether the given item is
an informational prompt (see
comments below).

qaresultint_
ISWARNINFORMATION

22 Return whether the given item is
a warning informational prompt
(see comments below).

qaresultint_
ISINCOMPLETESADDR

23 Return whether the given item is
a dummy item in premise-less
countries (see comments below).

qaresultint_
ISUNRESOLVABLERANGE

24 Return whether the given item is
a static range item that cannot be
expanded. This applies to USA
data only (see comments below).

For the types that are prefixed qaresultint_IS, the following values can be returned
from the parameter rlDetail:

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

A dummy PO Box picklist item is one that can be stepped into and contains PO
Box type addresses beneath. This should not be handled as a special case in an
integration, but a GUI may choose to use a different icon to display.

122

An informational picklist item is one that does not correspond to an address, but
instead conveys useful information to the user. Some informational prompts can
be stepped into, and so must never be filtered by the integration. The item itself
should not be handled as a special case in an integration, but a GUI may choose
to use a different icon to display.

A dummy item in a premise-less country will be returned for datasets where
premise-level detail is not available. When you step into a picklist item that
corresponds to a street, then this item may be returned in the resulting picklist.
The result description will prompt you to enter the building detail which will refine
the picklist and generate the desired complete address. The item itself should not
be handled as a special case in an integration, but a GUI may choose to use a
different icon to display.

An unresolvable range item will be returned for a premise range that cannot be
stepped into using QA_StepIn. Instead, you must type text to refine the picklist
further to generate the desired complete address. The item itself should not be
handled as a special case, but a GUI integration may choose a different icon to
display.

The partial address for a given result is a single line showing the most complete
address information that can be returned at that stage of the search. For example,
if the user has typed down to street level, and the street has a unique postcode
and locality, the partial address would consist of the street name, locality and
postcode, without a premise name or number.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Index The value passed to parameter viResult was not a valid
picklist item offset. The range should be between 0 and the
picklist result count - 1.

123

QA_GetSearchStatus

Obtains the status of a search. This function is an alternative to QA_
GetSearchStatusDetail. Using this function, all of the search status is returned
together through flags. See "Flags Returned" on page 73.

This function is used to retrieve the number of results matched by the engine; and
also if anything unexpected has occurred, such as if the search times out or if
there are too many matches to display.

This function can be called while a search is still in progress. This situation could
occur if "Asynchronous Searching" (see page 76) was active, or if the integration
uses a different thread to call the function.

Prototype

INTRET QA_GetSearchStatus (INTVAL viHandle,

INTREF riPicklistSize,

INTREF riPotential,

LONGREF rlSearchState);

Arguments

viHandle Handle for this instance of the API
riPicklistSize Size of the picklist used for the index
riPotential Number of total potential items
rlSearchState The state after a search

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The flags with the prefix qastate_AUTO are related to auto stepping and
formatting.

124

The parameter riPotential can be useful when the search has returned a number
of matches over the threshold, so riPicklistSize is 1. riPotential then gives an idea
of how far the results exceed the threshold. The value that is returned from
riPotential is only an approximate estimate of the number of potential matches,
which may indicate the extent of the refinement that should be performed in order
to return a single result. This estimate should only be used as a guide to the user,
and not relied upon in the integration.

The returnable flags (see "Flags Returned" on page 73) in the rlSearchState
parameter are ORed together, and are as follows:

Symbolic Name Decimal
Value Description

qastate_NOSEARCH 1 No search has been started.

qastate_STILLSEARCHING 2 The search is still in progress.

qastate_TIMEOUT 4 The search has timed out.

qastate_SEARCHCANCELLED 8 The search has been cancelled
using QA_CancelSearch.

qastate_MAXMATCHES 16 The maximum number of results
has been reached, and there are
too many to return: therefore, no
results are returned. The search
is finished and you must call QA_
EndSearch before beginning a
new one.

qastate_OVERTHRESHOLD 32 There are too many matches to
display, as there are more picklist
items than the threshold value.
The threshold value is set in QA_
SetEngineOption (see page 138).

qastate_LARGEPOTENTIAL 64 Potentially, there are too many
results to display, so you must
keep typing (i.e., search with a
larger string) in order to refine the
search.

qastate_MOREOTHERMATCHES 128 There are additional other
matches that can be displayed.

125

Symbolic Name Decimal
Value Description

qastate_REFINING 256 Any text passed into QA_Search
will be used to refine the current
picklist rather than search.

qastate_AUTOSTEPINSAFE 512 The current picklist is trivial,
therefore it is suggested that you
immediately step into the first
picklist item.

qastate_
AUTOSTEPINPASTCLOSE

1024 There are other close matches
present, but only one exact
match. Integrators may choose to
step immediately into the first
picklist item with QA_StepIn.

qastate_CANSTEPOUT 2048 Can step out of the picklist by
calling QA_StepOut.

qastate_AUTOFORMATSAFE 4096 The current picklist is trivial,
therefore it is suggested that you
immediately format the first
picklist item with QA_
FormatResult.

qastate_
AUTOFORMATPASTCLOSE

8192 There are other close matches
present, but only one exact
match. Integrators may choose to
format immediately the first
picklist item with QA_
FormatResult.

126

QA_GetSearchStatusDetail

Obtains detailed information about the status of a search. This function is an
alternative to QA_GetSearchStatus. Using this function you can inquire about
individual aspects of the search status separately, instead of obtaining all the
information through the use of flags.

This function can be called while a search is still in progress. This situation could
occur if you use asynchronous searching, or if the integration uses a different
thread to call the function.

Prototype

INTRET QA_GetSearchStatusDetail (INTVAL viHandle,

INTVAL viType,

LONGREF rlDetail,

STRREF rsDetail,

INTVAL viDetailLength);

Arguments

viHandle Handle for this instance of the API
viType Type of detail requested
rlDetail Returned detail integer
rsDetail Returned detail string
viDetailLength Length of rsDetail

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

If the symbolic name of the result detail type passed to viType is prefixed with
qassstr_ then a string will be returned through the rsDetail parameter. If the
symbolic name is prefixed with qassint_ then an integer will be returned through
the rlDetail parameter.

127

The detail types with the prefix qassint_ISAUTO are related to auto stepping and
formatting.

The parameter viType is used to specify the information that you want to be
returned. It can take one of the following values:

Symbolic Name Decimal
Value Description

qassint_PICKLISTSIZE 1 Returns the size of picklist.

qassint_POTENTIALMATCHES 2 Returns the number of potential
matches.

qassint_SEARCHSTATE 3 Returns the search state flags (as
returned by QA_
GetSearchStatus).

qassint_ISNOSEARCH 4 Returns whether a search has not
yet been started.

qassint_ISSTILLSEARCHING 5 Returns whether a search is
currently in progress.

qassint_ISTIMEOUT 6 Returns whether the search timed
out. The timeout limit is set in QA_
SetEngineOption.

qassint_ISSEARCHCANCELLED 7 Returns whether the search has
been cancelled using QA_
CancelSearch.

qassint_ISMAXMATCHES 8 Returns whether the maximum
number of results has been
reached and there are too many
to return.

qassint_ISOVERTHRESHOLD 9 Returns whether there are more
picklist items than the threshold
value, and therefore too many
matches to display.

qassint_ISLARGEPOTENTIAL 10 Returns whether there are
potentially too many results to
display and the search must be
further refined.

128

Symbolic Name Decimal
Value Description

qassint_
ISMOREOTHERMATCHES

11 Returns whether there are
additional other matches that can
be displayed.

qassint_ISREFINING 12 Returns whether any text passed
into QA_Search will be used to
refine a picklist rather than to
search.

qassint_ISAUTOSTEPINSAFE 17 Returns whether the current
picklist is trivial and you should
step into the first item.

qassint_
ISAUTOSTEPINPASTCLOSE

18 Returns whether there are some
close matches in the picklist but
only one exact match that could
be automatically stepped into
using QA_StepIn.

qassint_CANSTEPOUT 19 Returns whether the current
picklist can be stepped out of
using QA_StepOut.

qassint_ISAUTOFORMATSAFE 20 Returns whether the current
picklist is trivial and you should
format the first item.

qassint_
ISAUTOFORMATPASTCLOSE

21 Returns whether there are some
close matches in the picklist but
only one exact match that could
be automatically formatted.

For the types that are prefixed qassint_IS and for qassint_CANSTEPOUT, the
following boolean values can be returned from the parameter rlDetail:

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

129

QA_GetSystemInfo

Gets a line of the system information produced by QA_GenerateSystemInfo.

Prototype

INTRET QA_GetSystemInfo (INTVAL viHandle,

INTVAL viLine,

STRREF rsBuffer,

INTVAL viBufferLength);

Arguments

viHandle Handle for this instance of the API
viLine Line number to extract
rsBuffer Returned system information line
viBufferLengthSize of rsBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viLine should be passed an index into the count of generated
system information lines from QA_GenerateSystemInfo, between 0 and the
count - 1.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Index The value passed to parameter viLine was not a valid line of
generated system information. The range should be between
0 and the count of lines - 1 from QA_GenerateSystemInfo.

130

QA_Open

Opens an instance of the API allowing you to specify the name of the
configuration file to use and the section to use within that file.

The handle returned from riHandle is the one you will pass to all other functions. If
the call to QA_Open fails for any reason, then the handle returned will not be
valid to pass to other functions, exceptQA_Close.

There is no inherent limit on the number of instances that can be created with
QA_Open and held simultaneously. System resources such as memory can limit
the number, although this would never typically be reached for an integration
upon a suitable machine.

For more information on handles and instances, see "API Instances" on page 73.

Prototype

INTRET QA_Open (STRVAL vsIniFile,

STRVAL vsSection,

INTREF riHandle);

Arguments

vsIniFile Name of configuration file to open
vsSectionSection of the configuration file to use
riHandle Instance handle returned by the API

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The layout for the instance will default to an internal layout that will be valid but
may not be suitable. However, Experian QAS strongly recommends that you
should call QA_SetActiveLayout after QA_Open.

131

If no configuration file is specified, the standard ini file qaworld.ini will be used. If
no section is specified, the default 'QADefault' will be used.

A call to QA_Openmust have a corresponding call to QA_Close.

Error Scenarios

INI File Error The configuration file specified in parameter viIniFile cannot
be opened.

Open Failure The API was unable to create a new instance. Use the
LogErrors configuration setting to determine where the
problem lies (see "Output Address Format Settings" on page
194).

132

QA_Search

Performs a search using the current active dataset.

This function should be called when you have entered text to be searched upon.
This will be in two cases:

l You are entering the initial search using the single line engine.

l You are entering text to refine the picklist further.

To finish an old search and perform a new one, you must first call QA_
EndSearch.

See "Searching With QAS Pro" on page 25 for more information about how to
search and refine addresses.

Prototype

INTRET QA_Search (INTVAL viHandle

STRVAL vsSearch);

Arguments

viHandle Handle for this instance of the API
vsSearch The search string

Return Value

Either: 0 if call is successful
Or: Negative error code

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Layout The active layout that is set for the instance is invalid. The list
of valid layouts can be obtained by using the QA_
GetLayoutCount and QA_GetLayout functions. A layout
may be defined for a specific dataset only, and so changing
the active dataset may invalidate the active layout.

133

QA_SetActiveData

Sets the active dataset to be searched upon. Data IDs for datasets are retrieved
using QA_GetData which can be used to list all available datasets.

If the active dataset is changed once a search has begun, this will end the current
search and reset all results.

Some layouts are defined only for specific datasets, and so changing the active
dataset may invalidate the active layout.

Prototype

INTRET QA_SetActiveData (INTVAL viHandle,

STRVAL vsDataID);

Arguments

viHandle Handle for this instance of the API
vsDataIDData ID of the dataset to use

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

If you pass a blank string to vsDataID, the active data will be set to the first usable
dataset found by the system.

Error Scenarios

Data Not Available The dataset specified in parameter vsDataID is unavailable.
This should be passed dataset IDs as returned by QA_
GetDataCount and QA_GetData.

134

QA_SetActiveLayout

This sets the layout that is used to format a final address. Layout names are
retrieved using QA_GetLayout which can be used to get all available layouts.

Some layouts are defined only for specific datasets and so changing the active
dataset may invalidate the active layout. The integration must ensure that either:

l All layout names are defined for all available datasets (advised)

or

l The integration checks that the active layout is still valid when the active
dataset is changed by calling QA_GetLayoutCount and QA_GetLayout.

You can call this function once a search has begun, although it will not affect an
address that has already been formatted using QA_FormatResult or QA_
FormatExample. If you wish to reformat an address using a different layout then
you must recall the appropriate formatting function after changing the active
layout.

Prototype

INTRET QA_SetActiveLayout (INTVAL viHandle,

STRVAL vsLayout);

Arguments

viHandleHandle for this instance of the API
vsLayoutLayout name as retrieved by QA_GetLayout

Return Value

Either: 0 if call is successful
Or: Negative error code

135

Comments

The parameter vsLayout can optionally be passed a blank string instead of a valid
layout name. This will set the layout to the default layout as specified in the
[QADefault] section of the configuration file, or to an internal layout if this does not
exist. This allows the integrator to specify a layout that is guaranteed to be valid
for the active dataset.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Layout The active layout that is set for the instance is invalid. The list
of valid layouts can be obtained by using the QA_
GetLayoutCount and QA_GetLayout functions. A layout
may be defined for a specific dataset only, and so changing
the active dataset may invalidate the active layout.

136

QA_SetEngine

Changes the current search engine. If the search engine is changed during a
search, this will end the current search.

Prototype

INTRET QA_SetEngine (INTVAL viHandle,

INTVAL viEngine);

Arguments

viHandle Handle for this instance of the API
viEngine Engine to be selected

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The possible search engines that can be passed to viEngine are:

Symbolic Name Decimal
Value Description

qaengine_SINGLELINE 1 Single line engine

qaengine_TYPEDOWN 2 Typedown engine

qaengine_KEYFINDER 5 Keyfinder engine

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

137

QA_SetEngineOption

Sets engine-related attributes for the given engine. The attributes that can be
modified include threshold, timeout, search intensity and asynchronous
operation.

Prototype

INTRET QA_SetEngineOption (INTVAL viHandle,

INTVAL viEngOption,

LONGVAL vlValue);

Arguments

viHandle Handle to the API
viEngOption The engine option to be set
vlValue Value for this option

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The possible engine options that can passed to viEngOption are as follows:

Symbolic Name Decimal
Value Description

qaengopt_DEFAULT 0 Resets the engine options to the
defaults.

qaengopt_ASYNCSEARCH 1 Single line searches will be
asynchronous. The default is
qavalue_FALSE.

qaengopt_ASYNCSTEPIN 2 Calls to QA_StepIn will be
asynchronous. The default is
qavalue_FALSE.

138

Symbolic Name Decimal
Value Description

qaengopt_ASYNCREFINE 3 Picklist refinement will be
asynchronous. The default is
qavalue_FALSE.

qaengopt_THRESHOLD 6 Allows you to set the result size
threshold. The default is 25. The
minimum limit is 5 and the
maximum limit is 1000.

qaengopt_TIMEOUT 7 Allows you to set the timeout limit
(ms). The default is 0
milliseconds (never times out)
and the limit is 600000 (10
minutes).

qaengopt_SEARCHINTENSITY 8 Single-line mode edit distance
level. The default is qaintensity_
CLOSE.

The engine options that control asynchronous searching are as follows:

l qaengopt_ASYNCSEARCH

l qaengopt_ASYNCSTEPIN

l qaengopt_ASYNCREFINE

These can only be used for multithreaded versions of the library: the single
threaded version of the library will not accept them. This is because they require
the API to create threads if the options are enabled.

The type qaengopt_DEFAULT does not use the parameter vlValue.

The types qaengopt_ASYNCSEARCH, qaengopt_ASYNCSTEPIN, and
qaengopt_ASYNCREFINE can have the following values passed to parameter
vlValue:

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

139

The engine option type qaengopt_SEARCHINTENSITY can have the following
values passed to parameter vlValue:

Search Intensity Values

qaintensity_EXACT 0 Exact searching

qaintensity_CLOSE 1 Close searching

qaintensity_EXTENSIVE 2 Extensive searching

The search intensity setting represents how hard the Single Line search engine
will search for an address with respect to the accuracy of matches. If the search
intensity is set higher, then searches may take longer to perform, although more
inexact matches will be returned.

When using qaengopt_THRESHOLD and qaengopt_TIMEOUT, an integer value
should be passed to vlValue.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Value The value passed to parameter vlValue is not valid for the
given engine option.

140

QA_Shutdown

Closes down the API, and must be called as the final function, after all instances
have been closed with QA_Close.

The shutdown function frees all resources associated with the Universal API and
must be the last function to be called in the API before the calling program ends or
unloads the API from memory.

Prototype

VOIDRET QA_Shutdown (VOIDARG);

141

QA_StepIn

Selects a picklist item from a picklist to expand further.

You can only step into a result if it has a qaresult_CANSTEP flag: otherwise an
error will be returned. See QA_GetResult on page 116 and QA_
GetResultDetail on page 120 for more information.

Prototype

INTRET QA_StepIn (INTVAL viHandle,

INTVAL viResult);

Arguments

viHandleHandle for this instance of the API
viResult Index of picklist item

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

The parameter viResult should be passed an index into the count of available
picklist items from QA_GetSearchStatus, between 0 and the count - 1.

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Bad Index The value passed to parameter viResult was not a valid
picklist item offset. The range should be between 0 and the
picklist result count - 1.

Bad Step The picklist result item that was passed into viResult is not an
item that can be stepped into. Only picklist items that have
the flag qaresult_CANSTEP from QA_GetResult can be
stepped into.

142

QA_StepOut

Steps back a stage in a search, returning to the previous list of items.

This is not possible if a step in has not been performed. IfQA_StepOut is called
before QA_StepIn, an error will be returned. The search state qastate_
CANSTEPOUT can be used to determine whether QA_StepOut can be called.

Prototype

INTRET QA_StepOut (INTVAL viHandle);

Arguments

viHandleHandle for this instance of the API

Return Value

Either: 0 if call is successful
Or: Negative error code

Error Scenarios

Busy Handle The parameter viHandle has been passed a handle that is
already in use in another thread. Each handle can only be
used by one thread at any point in time.

Out of Sequence The API cannot 'step out' of a picklist if a search has not been
yet performed.

Bad Step The picklist cannot be stepped out from, as it is at the top
level. This can be checked through the API by calling QA_
GetSearchStatus and checking for the flag qastate_
CANSTEPOUT.

143

User Interface API
Reference

Handling Client/Server Errors

This section is only applicable if you have configured the QAS Pro client to use
the QAS Pro server.

There are some network communication errors from which it is not always
possible to recover. These error conditions are listed below:

l Server connection full

Whilst connecting to a server, the server’s maximum connection count has
been reached.

l Connection cancelled

This occurs when there is a failure to find a server, or when the connection to
the server is lost.

l Connection timeout

The server has failed to respond within the timeout period.

If any of the above error conditions occur, the QAS Pro API will return qaerr_
NOLIVESERVER. This error is fatal - you must therefore close the API by calling
QAProWV_UIShutdown. (Any other operations will continue to return the error.)

You may continue operation by attempting to open the API with QAProWV_
UIStartup.

If you have multiple servers configured, you will only need to call QAProWV_
UIStartup once, as it will attempt to connect to each server in turn before returning
qaerr_NOLIVESERVER.

145

Pseudocode Example Of QAS Pro API
This section provides an overview of how a program using the QAS Pro User
Interface (UI) API works at a conceptual level. The pseudocode used is
independent of any programming language.

The example below uses the main QAS Pro UI API functions to clarify how they
work together. The pseudocode does not use all of the available functions.

The concept of the User Interface API is that a single instance of the QAS Pro
application can be controlled through a small set of API functions. To create the
application, the function QAProWV_UIStartupmust be called. At this point, no
graphical display will be visible.

The function takes a flag parameter vlFlags which controls the overall behaviour
of the user interface. See QAProWV_UIStartup on page 173 for a detailed
explanation of each of the individual flags that can be passed.

Start the Pro application [QAProWV_UIStartup]

As with all API calls, the Open call could fail for various reasons. The most
common reasons for this to occur are that the product is not installed or
configured properly. If Open fails, address matching will not be available. When
integrating the User Interface API, it is useful to enable error logging. For more
information, see "Error Logging Settings" on page 210.

Repeat

The text that you want to search on should be obtained from the user from within
the integration environment and passed to the function QAProWV_UISearch. If
you do not want to obtain the text from the user integration, but would instead
rather just popup the QAS Pro graphical interface in order to allow the user to
enter the search directly into QAS Pro, then pass a blank string to QAProWV_
UISearch.

Search with the provided text [QAProWV_UISearch]

This function call will return to the caller either once a final address has been
selected, or when the application has been manually closed. The return value
from the function QAProWV_UISearch can be tested to determine whether the
user completed a search. We will assume in the pseudocode that a search has
been successfully completed.

146

The next step is to retrieve the final address result which will have been formatted
using the rules specified in the selected layout. First obtain a count of formatted
lines, and then retrieve each one in turn:

Obtain a count of formatted lines [QAProWV_UIResultCount]

For Each formatted line

Retrieve the line text [QAProWV_UIGetResult]

Return text to integration

End For

Until no more searches are required

Once all required searches have been performed, the function QAProWV_
UIShutdownmust be called to free all allocated resources. For performance
reasons, it is advised to only call QAProWV_UIShutdown once all searches have
been performed, rather than between separate searches.

Shutdown the application [QAProWV_UIShutdown]

147

API Function Reference
The User Interface API functions can be split into the following groups:

l General Functions

Starting up and shutting down the API.

l Search Functions

Performing a search, and retrieving picklists of results and formatted
addresses.

l Housekeeping Functions

Viewing and selecting available datasets, address formats and functionality
flags.

Below is a full list of the QAS Pro User Interface API functions and where you can
find them:

General Functions

QAProWV_UIStartup (see page 173)
Initialises the API.

QAProWV_UIShutdown (see page 172)
Closes down the API.

Search Functions

QAProWV_UISearch (see page 168)
Performs a search on an input string.

QAProWV_UIResultCount (see page 167)
Returns a count of the number of lines in a selected address.

QAProWV_UIGetResult (see page 159)
Retrieves a full matched address.

QAProWV_UIGetResultDetail (see page 161)
Retrieves detailed information regarding an address.

148

Housekeeping Functions

QAProWV_UILayoutCount (see page 163)
Returns a count of available layouts.

QAProWV_UIGetLayout (see page 157)
Retrieves the name of one layout.

QAProWV_UIGetActiveLayout (see page 153)
Retrieves the name of the currently selected layout.

QAProWV_UISetActiveLayout (see page 170)
Selects a new layout to use.

QAProWV_UILayoutLineElements (see page 164)
Retrieves the element fixed to a specific layout line.

QAProWV_UICountryCount (see page 150)
Returns a count of available datasets.

QAProWV_UIGetCountry (see page 154)
Retrieves the name of one dataset.

QAProWV_UIGetActiveCountry (see page 151)
Retrieves the name of the currently selected dataset.

QAProWV_UISetActiveCountry (see page 169)
Selects a new dataset to use.

QAProWV_UIGetFlags (see page 156)
Retrieves the currently-set functionality flags.

QAProWV_UISetFlags (see page 171)
Sets new functionality flags.

149

QAProWV_UICountryCount

Retrieves the number of installed datasets available to the API.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UICountryCount (INTREF riCount);

Arguments

riCountNumber of datasets available

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

Comments

This function tells you how many datasets are configured for the API. The
availability of datasets is determined by your qawserve.ini file.

Once you have the number of datasets, you can call QAProWV_UIGetCountry as
many times as is necessary to retrieve a description of each dataset.

150

QAProWV_UIGetActiveCountry

Retrieves the identifier of the currently active dataset.

Pre-call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UIGetActiveCountry (STRREF rsBuffer,

INTVAL viLength);

Arguments

rsBuffer Buffer to receive country identifier
viLength Length of rsBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

Comments

The identifier returned by this function is that of the dataset currently open for
searching. Any search submitted to the API at this point with QAProWV_UISearch
will be checked against this dataset.

This dataset is the one specified in your call to QAProWV_UIStartup, unless it
has been changed since with QAProWV_UISetActiveCountry or via the user
interface.

151

As an identifier is three characters long, you should use a minimum buffer of size
of 4 to allow for a null terminating character.

152

QAProWV_UIGetActiveLayout

Retrieves the name of the current configuration layout.

Pre-call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UIGetActiveLayout (STRREF rsBuffer,

INTVAL viLength);

Arguments

rsBuffer Buffer to receive layout name
viLength Length of rsBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

Comments

The layout name returned by this function is that of the configuration layout
currently in use. Any address returned from a search submitted to the API at this
point with QAProWV_UISearch will be formatted according to this layout.

The layout is the one specified in your call to QAProWV_UIStartup, unless it has
been changed since with QAProWV_UISetActiveLayout or via the user
interface.

153

QAProWV_UIGetCountry

Retrieves one dataset name and identifier, in conjunction with QAProWV_
UICountryCount.

Pre-Call Conditions

QAProWV_UIStartup has been called to start the API.QAProWV_
UICountryCount has been called to return a count of the available datasets.

Prototype

INTRET QAProWV_UIGetCountry (INTVAL viIndex,

STRREF rsIsoBuffer,

STRREF rsNameBuffer,

INTVAL viNameLength);

Arguments

viIndex Number of datasets (from 0 to QAProWV_UICountryCount - 1)
rsIsoBuffer Buffer to receive identifier of dataset
rsNameBuffer Buffer to receive name of dataset
viNameLengthMaximum length of rsIsoBuffer and rsNameBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3400 qaerr_INVALIDCOUNTRYINDEX

-3407 qaerr_UIAPINOTSTARTED

154

Comments

This function, in conjunction with QAProWV_UICountryCount, is useful if you
want to confirm the number, names and identifiers of available datasets for a
particular instance of the API. For example, you might want to use this
functionality prior to the first call ofQAProWV_UISearch, so that you know which
datasets are available to search on.

You should call this function as many times as required to retrieve dataset details.
For example, ifQAProWV_UICountryCount returned a count of 4, you would call
this function a maximum of four times to retrieve details of each dataset, setting
viIndex to 0, 1, 2 and 3.

The parameter viIndex contains the number of the dataset whose details you want
to retrieve – for example, inputting 0 retrieves the name of the first installed
dataset, 1 returns the name of the second dataset, and so on.

The output parameters rsIsoBuffer and rsNameBuffer contain the identifier and
name respectively of a dataset. An identifier is a unique three-letter descriptor for
a dataset, which appears in the Data Guide supplied with your data. For example,
the Australia dataset has the identifier AUS. The rsIsoBuffer parameter should
always have at least a four-character buffer.

155

QAProWV_UIGetFlags

Returns the current configuration flags.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UIGetFlags (LONGREF rlFlags);

Arguments

rlFlags Line description flags

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

Comments

This function tells you which functionality flags are currently set. The flags are
originally set with QAProWV_UIStartup.

To add or remove flags, call QAProWV_UISetFlags.

156

QAProWV_UIGetLayout

Retrieves the name of a particular configuration layout.

Pre-Call Conditions

QAProWV_UIStartup has been called to start the API.QAProWV_
UILayoutCount has been called to return a count of the available layouts.

Prototype

INTRET QAProWV_UIGetLayout (INTVAL viIndex,

STRREF rsBuffer,

INTVAL viLength);

Arguments

viIndex Number of layout to retrieve (from 0 to QAProWV_UILayoutCount -1)
rsBuffer Buffer to receive layout name
viLengthMaximum length of rsBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3401 qaerr_INVALIDLAYOUTINDEX

-3407 qaerr_UIAPINOTSTARTED

Comments

This function, in conjunction with QAProWV_UILayoutCount, is useful if you want
to confirm the number and names of available configuration layouts prior to
searching.

157

You should call this function as many times as required to retrieve layout names
from a configuration file. For example, ifQAProWV_UILayoutCount returned a
count of 6, you would call QAProWV_UIGetLayout six times to retrieve each
layout name.

The parameter viIndex contains the number of the layout whose name you want
to retrieve – for example, inputting 0 retrieves the name of the first layout in the
configuration file, 1 returns the name of the second layout, and so on. An error will
be returned if an invalid number is passed into this parameter.

158

QAProWV_UIGetResult

Retrieves one line of a returned address.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup, and a search has been
started with QAProWV_UISearch.

Prototype

INTRET QAProWV_UIGetResult (INTVAL viIndex,

STRREF rsBuffer,

INTVAL viLength);

Arguments

viIndex Number of the line to retrieve (from 0 to QAProWV_UIResultCount -1)
rsBuffer Buffer to receive search result
viLengthMaximum length of rsBuffer

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

-3803 qaerr_INVALIDADDRESSLINE

Comments

This function returns one formatted address line from a search. You get the total
number of address lines from the function QAProWV_UIResultCount.

159

You should call this function as many times as required to retrieve the full
address. For example, ifQAProWV_UIResultCount returned a count of 5 address
lines, you would call this function five times to retrieve each item.

The parameter viIndex contains the number of the result line which you want to
retrieve – for example, inputting 0 retrieves the description of the first line in the
layout, 1 returns the second line, and so on. An error will be returned if an invalid
line number is specified.

160

QAProWV_UIGetResultDetail

Retrieves the address details for an address selected from a returned picklist.
This function also returns information to show the integrator whether or not a
selected address has been modified by the user, whether the address is validated
as a USPS Delivery Point (US data only), and whether the address has been
truncated or whether any address details have been lost.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup, and a search has been
started with QAProWV_UISearch.

Prototype

INTVAL QAProWV_UIGetResultDetail (INTVAL viType,

LONGREF rlDetail,

STRREF rsDetail,

INTVAL viDetailLength);

Arguments

viType Type of result detail requested. Please refer to the following table
for values for viType

rlDetail Returned integer detail
rsDetail Returned string detail
viDetailLength Length of rsDetail

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

Most of the flags relate to the address that was returned to the final address
screen. If the user edits that address, then the validity of the flags will be
uncertain.

161

If the symbolic name of the result detail type passed to viType is prefixed with
qaresultstr_ then a string will be returned through the rsDetail parameter. If the
symbolic name is prefixed with qaresultint_ then an integer will be returned
through the rlDetail parameter.

The parameter viType is used to specify what piece of information you want to be
returned (to the final address screen). It can take one of the following Boolean
values:

Detail type Description

qaresultint_
ISDPVVALID

Returns whether the given address is a valid USPS
Delivery Point. This value only applies for US address
data.

qaresultint_ISEDITED Returns whether that the user has manually edited the
selected address, so any DPV assessment (returned on
the original address) may no longer be valid.

qaresultint_
ISOVERFLOW

Returns whether there are insufficient address lines in
the selected layout to accommodate all of the address
details.

qaresultint_
ISTRUNCATED

Returns whether any address information has been
truncated.

qaresultint_
ISUNVERIFIED

Returns whether the user has selected an unverified
address (by pressing Ctrl+Enter prior to arriving at the
final address screen).

For the types that are prefixed qaresultint_IS, the following values can be returned
from the parameter rlDetail:

Boolean Values

qavalue_FALSE 0 False

qavalue_TRUE 1 True

162

QAProWV_UILayoutCount

Retrieves the number of available layouts in the configuration file.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UILayoutCount (INTREF riCount);

Arguments

riCountNumber of layouts in the configuration file

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

Comments

This function tells you how many configuration layouts are available in your
qawserve.ini file. The number available to use depends on the active country.
See "Overview" on page 185 for a detailed description of configuration files and
layouts.

Once you have the number of layouts, you can call QAProWV_UIGetLayout as
many times as is necessary to retrieve the name of each layout.

163

QAProWV_UILayoutLineElements

Returns a description of the element fixed to a particular line of the currently
selected address layout.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup and a layout has been
selected.

Prototype

INTRET QAProWV_UILayoutLineElements (INTVAL viIndex,

STRREF rsBuffer,

INTVAL viLength,

LONGREF rlType);

Arguments

viIndex Address line to retrieve
rsBuffer Buffer to receive line elements
viLengthMaximum length of rsBuffer
rlType Line type description

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3411 qaerr_INVALIDLINEINDEX

164

Comments

This function tells you which address elements, if any, have been fixed to certain
lines of the address layout. This function returns the name of an address element
when there is only one element fixed to a line. If there is more than one element
fixed to a line, a blank string will be returned.

If you want to retrieve descriptions of each address line from the current layout,
you should call this function as many times as required. For example, if your
address layout contains 6 address lines (as indicated by a call to QAProWV_
UIResultCount), you could call this function six times to retrieve each layout line.

The parameter viIndex contains the number of the address line whose description
you want to retrieve. This is zero-based – for example, inputting 0 retrieves the
description of the first line in the layout, 1 returns the second line, and so on.

The parameter rsBuffer contains the results of the function call. For example, if the
town was fixed to line 4 of an address layout, you would set the value of viIndex
as 3, and rsBuffer would return 'Town'. If there are no elements fixed to the line
that you have specified, the buffer will be empty.

The rlType parameter contains the type of line that is being retrieved. The types
that can be returned are as follows:

Type Name Decimal Value

element_ADDRESS 0

element_NAME 1

element_DATAPLUS 2

element_ANCILLARY 3

For example, you might have a seven-line address layout, where the first line
contains name information, the second to sixth lines contain the address, and the
final line is reserved for DataPlus data. In this case, the first line of the returned
address would return element_NAME, the last line would return element_
DATAPLUS, and the lines in between would return element_ADDRESS.

The values assigned to each type are symbolic constants defined by the API, and
appear in the prototyped header files for each language.

165

This function will fail safely with an error if the viIndex parameter is out of range
(for example, if you specify line 6 in a five line layout).

166

QAProWV_UIResultCount

Returns a count of the number of address lines in a selected address.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup, and a search has been
submitted with QAProWV_UISearch.

Prototype

INTRET QAProWV_UIResultCount (INTREF riCount);

Arguments

riCountNumber of address lines

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

Comments

This function tells you the number of lines in the final selected address, and
hence how many times the function QAProWV_UIGetResult needs to be called
in order to retrieve them.

167

QAProWV_UISearch

Performs a search on the input string.

Pre-Call Conditions
The API has been started with QAProWV_UIStartup.

Prototype
INTRET QAProWV_UISearch (STRVAL vsSearch);

Arguments

vsSearch Input string to search on

Return Value

Either: Positive value for successful search
Or: 0 if call is successful
Or: Negative error code

Possible Error Codes
-3407 qaerr_UIAPINOTSTARTED

Comments
If the specified search returns a single matching property, and the qaattribs_
NOCONFIRMVIEW and qaattribs_MINDISPLAY flags are in effect, it can be
retrieved immediately by calling QAProWV_UIResultCount and QAProWV_
UIGetResult.

Otherwise, the search results will be displayed in the QAS Pro User Interface for
the user to interactively confirm, before this function returns.

168

QAProWV_UISetActiveCountry

Changes the active dataset.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UISetActiveCountry (STRVAL vsIsoCode);

Arguments

vsIsoCode Identifier of the dataset to change to

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

-3405 qaerr_CANTCHANGEDATABASE

Comments

This function allows you to switch between datasets without closing down the API.
The dataset is originally set in the call to QAProWV_UIStartup.

For example, passing AUS in the vsIsoCode parameter changes the active
dataset to Australia (if you have Australian data installed).

You can find out which datasets are available with the functions QAProWV_
UICountryCount and QAProWV_UIGetCountry. An error will be returned if you
specify the code of a database that is not installed.

169

QAProWV_UISetActiveLayout

Changes the configuration layout.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UISetActiveLayout (STRVAL vsLayout);

Arguments

vsLayout Layout name to change to

Possible Error Codes

-3402 qaerr_UNKNOWNLAYOUTNAME

-3407 qaerr_UIAPINOTSTARTED

Comments

This function allows you to switch between configuration layouts within an
instance of the API. The layout was originally set with your call to QAProWV_
UIStartup.

You can find out which layouts are available in the configuration file with the
functions QAProWV_UILayoutCount and QAProWV_UIGetLayout.

The text in vsLayoutmust match one of the layout names returned from
QAProWV_UIGetLayout, or an error will be returned. Note that the function is
case-sensitive – for example, to select the layout QADefault, you cannot enter
'qadefault', as the API will not recognise it.

170

QAProWV_UISetFlags

Adds and removes configuration flags.

Pre-Call Conditions

The API has been started with QAProWV_UIStartup.

Prototype

INTRET QAProWV_UISetFlags (LONGVAL vlRemove,

LONGVAL vlAdd);

Arguments

vlRemove Flags to remove
vlAdd Flags to add

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-3407 qaerr_UIAPINOTSTARTED

-3414 qaerr_BADCONFIGFLAGS

Comments

This function allows you to change the flags that were set with QAProWV_
UIStartup.

Call the function QAProWV_UIGetFlags for a list of the currently set flags.

171

QAProWV_UIShutdown

Closes down the API.

Pre-Call Conditions

The API is initialised.

Prototype

VOIDRET QAProWV_UIShutdown (INTVAL viStatus);

Arguments

viStatusLast returned status code to be reported by the API prior to full shutdown.

Return Value

Either: 0 if call is successful
Or: Negative error code

Comments

This function will close down the API completely, and must be called as the final
function.

If another function has returned an error, you can specify this as the input
parameter in the call to QAProWV_UIShutdown. Then, when the API shuts down,
a dialog box will appear with a description of the error. If you have received an
error which you wish to handle yourself, or are shutting down without errors, pass
0 (zero) into the function.

172

QAProWV_UIStartup

Opens an instance of the API, specifying the name of the configuration file to be
used, the layout to format addresses with, and the available functionality.

Pre-Call Conditions

None.

Prototype

INTRET QAProWV_UIStartup (STRVAL vsTitle,

STRVAL vsIniFile,

STRVAL vsCountry,

STRVAL vsLayout,

STRVAL vsLanguage,

LONGVAL vlFlags);

Arguments

vsTitle Text to display in title bar
vsIniFile Name of configuration file to open
vsCountry Name of dataset to open
vsLayout Name of configuration layout to use
vsLanguageReserved for future use (should be set to NULL)
vlFlags Search functionality

Return Value

Either: 0 if call is successful
Or: Negative error code

Possible Error Codes

-1031 qaerr_BADINIFILE
-3405 qaerr_CANTCHANGEDATABASE
-3406 qaerr_UIAPIALREADYSTARTED
-3413 qaerr_NOLIVESERVER
-3414 qaerr_BADCONFIGFLAGS

173

Comments

When you open an instance of the QAS Pro API, you need to specify five things:

l The title which appears at the top of the dialog together with the active dataset
(defaults to blank) in vsTitle.

l A configuration file (default qaworld.ini) in vsIniFile.

l A layout within the configuration file (default QADefault) in vsLayout.

l The dataset to open for searching (defaults to the alphabetically first installed
dataset) in vsCountry.

l The initial functionality to use in vlFlags.

If NULL or an empty string is passed into any of the above STRVAL input
parameters, the API uses the defaults listed.

The flags that can be passed into vlFlags are as follows:

Symbolic Name Decimal
Value Description

qaattribs_NONE (Default) 0 All options set from Configuration
Editor. You do not need to specify
any other flags.

qaattribs_NOCONFIRMVIEW 4 When a full address is found, it is
returned directly to your application
rather than to QAS Pro's address
edit screen (see "Address Edit
Screen" on page 53).

qaattribs_NOLAYOUTCHANGE 8 Disables ability to change layout. In
order to enable this ability, the flag
and the .ini setting must be set.

qaattribs_NOHELP 16 Disables Help facility. Note that the
UIShowHelp INI setting has similar
functionality, and that there is no
Help provided for the UI API.

174

Symbolic Name Decimal
Value Description

qaattribs_NOCHANGEMODE 32 Disables ability to change
searching mode. This needs to be
set in conjunction with either
qaattribs_SINGLELINESEARCH or
qaattribs_TYPEDOWNSEARCH.

qaattribs_
NOCHANGECOUNTRY

128 Disables ability to switch between
datasets. In order to enable this
ability, the flag and the .ini setting
must be set.

qaattribs_SINGLELINESEARCH 256 Starts API in Single Line search
mode.

qaattribs_TYPEDOWNSEARCH 512 Starts API in Typedown search
mode.

qaattribs_KEYFINDERSEARCH 262144 Starts API in Key search mode.

qaattribs_NOPROBITMAP 8192 Displays the User Interface without
the QAS Pro bitmap.

qaattribs_MINDISPLAY 16384 Only displays the QAS Pro User
Interface if necessary - i.e. all
searches are done from your
application and the User Interface
only appears if there is a picklist of
results or an address to be
confirmed/edited.

qaattribs_READONLY 65536 If this flag is set, users will be unable
to edit addresses returned to the
address edit screen. This overrides
the Allow Address Editing option in
Configuration Editor.

qaattribs_NOLICENSINGDLG 131072 Disables the 'Dataset Due to Expire'
dialog, which is displayed by default
when QAS Pro is started up. This
lists all the datasets that are due to
expire soon.

The value given with each flag represents that flag’s hexadecimal value. If you
want to specify more than one of these flags (for example, Single Line searching
and no QAS Pro bitmap), the values should be ORed together.

175

If you attempt to set more than one search mode flag, the search engine will
default to Typedown. For example, if you set qaattribs_SINGLELINESEARCH and
qaattribs_TYPEDOWNSEARCH (by setting the vlFlags parameter to
0x00000300), the API will default to Typedown mode. To change the search
engine, call QAProWV_UISetFlags with only one of the search flags set.

You will get an error if QAS Pro API cannot find the specified configuration file, or
if one of the datasets has expired or has been moved from its default location.

Fail-over logic is included so thatQAProWV_UIStartup will loop through all of the
defined servers until a successful connection can be established. See the
Client/Server Guide or Client/Server Help for more information on fail-over logic.

176

Low-Level System Functions
The User Interface API also includes three low-level system functions.

The first of these is QAErrorMessage. This function translates a numeric error
code into a simple textual explanation of that error. For a full list of error codes see
the "Error Code Listing" on page 225.

Next is QAErrorLevel, which indicates the severity of an error and whether you
should take action on it.

Finally comes QASystemInfo, which lists system usage details, such as what
resources the API has taken from your operating system.

These functions are described on the following pages.

177

QAErrorMessage

This function translates an error code to a text message.

Prototype

VOIDRET QAErrorMessage (INTVAL viStatus,

STRREF rsBuffer,

INTVAL viBuffLen);

Arguments

viStatus Error code
rsBuffer Buffer to receive error text message
viBuffLenMaximum buffer length (including room for NULL terminator)

Comments

This function is useful for converting an error code to a short text message that
can be displayed to the user for informational purposes.

It is advised thatQAErrorMessage is called after any function which returns an
error code, as the text message might help you identify the cause of the error.

178

QAErrorLevel

Returns the severity of an error.

Prototype

INTRET QAErrorLevel (INTVAL viStatus);

Arguments

viStatus Error code

Return Value

Either: 0 for a fatal or serious error
Or: 1 for a warning

Comments

This function indicates the severity of an error returned by the API. A fatal or
serious error should be flagged to the user and must be dealt with. A warning
should be handled in a manner appropriate to the condition and can, if desired,
be ignored.

179

QASystemInfo

Returns detailed information about the system usage of QAS Pro.

Prototype

INTRET QASystemInfo (INTVAL viLineNo,

STRREF rsBuffer,

INTVAL viBuffLen);

Arguments

viLineNo Line number being accessed (or negative if resetting)
rsBuffer Buffer to receive text line
viBuffLenBuffer length (including room for NULL terminator)

Return Value

Either: 0 if call is successful
Or: negative error code for an invalid line number

Comments

You must call QAProWV_UIStartup before calling this function in the UI API.

The system information text contains detailed information about QAS Pro, how it is
configured, and the resources that it has taken from the operating system. The text
is split over several lines and so has to be read one line at a time. A buffer size of
80 bytes will be sufficient to guarantee that no lines are truncated.

When the first line is read, the library generates an internal copy of the system
information text. It is important that this copy is reset once all the lines have been
read otherwise the allocated memory will not be freed. This is done by calling this
function with the first parameter, viLineNo as -1 i.e. QASystemInfo (-1, NULL, 0).

180

Below is a C example that prints outQASystemInfo text:

void PrintSystemInfo(VOIDARG)

{

char sBuffer[80];

int iLineNo;

/* read each line in turn */

for (iLineNo = 0;

QASystemInfo(iLineNo, sBuffer, sizeof(sBuffer)) == 0;

iLineNo++)

{

puts(sBuffer);

}

/* reset in order to free memory */

QASystemInfo(-1, NULL, 0);

}

If you run the previous example, you get a result similar to this:

Program: QAUPIED
Copyright: QAS Ltd
Release: 6.00 (131)
Platform: Windows 32-bit
Libraries: QAKRNXF 2.23(227)

QAALSXD 2.0(13)
QAUFWXF 5.00(244.3)
QACOMXD 1.01(168)
QAHSGXD 3.00(112)
QAGENXD 1.00(27)
QAHSVXD 3.30(114)
QALICXD 1.00(29)
QAHCLXD 3.00(74)
QACDIXD 4.50(355)
QADC2XD 2.40(68)
QADS2XD 2.00(23)
QAWD2XD 2.40(84)
QAUSGXD 4.00(134)
QALL2XD 2.40(106)
QAUTDXD 4.00(139)
QAUTDXD 4.00(142.4)
QATIGXD 4.00(124.4)
QATIXXD 4.00(120)

181

QAZLCXD 1.01(42)
QAZLGXD 4.02(71)
QAZLSXD 4.02(57.2)

Config: C:\Program Files\QAS\QAS Pro API\qaworld.ini
Section: QAUPIED

Dongle: <none>

Prog Dir: C:\Program Files\QAS\QAS Pro API
Home Dir: C:\Program Files\QAS\QAS Pro API
Data Dir: C:\Program Files\QAS\QAS Pro API
Temp Dir: C:\Temp
Log File: <disabled>

Memory: 1099010 (allocs=134)

Data: 969928 (free=11216)
Blocks: 1465 (free=410)

Server-side INI file:C:\Program Files\QAS\QAS Pro API\qawserve.ini

Data ID: AUS
Country Name: Australia
Copyright: Australia Post
Version: 30 October 2004 (PAF v2005.1)
Data Expiry: 64 days
File path: Q:\data\AUS.dts

Data ID: GBR
Country Name: United Kingdom
Copyright: The Post Office
Version: 20 September 2004
Data Expiry: 267 days
File path: Q:\data\GBR.dts

Data ID: USA
Country Name: United States of America
Copyright: United States Postal Service
Version: 15 November 2004

182

Data Expiry: 63 days
File path: Q:\data\usa.dts

183

API Configuration

Overview
Before you can perform any searches with the QAS Pro API, you need to specify
where QAS Pro will search for addresses, and the format in which output
addresses are returned. This can be done using the Configuration
Editor (Windows only), or by editing the configuration files.

Configuration Editor

QAS Pro API is supplied with a Win32 Configuration Editor. This enables you to
do the following:

l create, edit and manage formatted address layouts for QAS Pro;

l install and manage QAS Pro datasets;

l set QAS Pro configuration options;

l control user access options in QAS Pro.

The Configuration Editor contains the ability to specify Pasting Options, but
these have no effect on the QAS Pro API.

For more information about the Configuration Editor, see the Configuration Editor
help.

Configuration Files

QAS Pro bases processing decisions on configuration (INI) files. There are two
configuration files supplied with QAS Pro: qaworld.ini and qawserve.ini.

l The qawserve.ini file is used to specify which datasets will be searched
against, and to define layouts, which will be used to format the addresses

185

found by QAS Pro.

In Client/Server mode, the qawserve.ini file is held by the Server, and is not
required at the Client. Please see the Client/Server documentation for further
information on editing this file.

The qawserve file is automatically used when the API is initialised. You
should not rename this, move it or attempt to call it with any of the API
functions.

l The qaworld.ini file is used to specify the behaviour of the application; for
example, search timeouts and picklist size thresholds.

If you are running the QAS Pro API in Client/Server mode, there are a number
of additional settings that must be specified in the qaworld.ini file. For more
information, refer to the Client/Server manual that was shipped with the
Client/Server version of QAS Pro.

The remainder of this chapter explains how to use the available configuration
settings in the configuration files.

Format Of A Configuration File

A configuration file can contain several sections, each comprising a number of
settings, which may or may not specify a layout. To view a configuration file, such
as the standard qawserve.ini file, use a plain text editor. Do not use a formatting
editor such as Microsoft Word because it will corrupt the configuration file with its
own formatting codes. Instead, use something like Notepad (under Windows) or vi
(under UNIX).

The sections within the configuration file have their titles in square brackets:

[section name]

The following section should be included in both configuration files:

[QADefault]

QADefault is, as its name suggests, the default section. You should not alter
anything within this section; to create alternative settings, copy QADefault,
rename it and then edit the copy.

186

Within INI files, section names define the beginning of each section. Section
names must be enclosed within square brackets and left-justified. A section ends
when a new section name is declared. The final section is terminated by the end
of the file.

Each section comprises a set of instructions in the form of keyword assignments,
like this:

keyword=value

A keyword is the name of a setting. It can consist of any combination of letters and
digits in uppercase or lowercase, and it must be followed immediately by an
equals sign (=), which introduces the value assigned to the keyword. The value
can be an integer, a string, or a quoted string, depending on the type of setting.
There should be no space between the = and value.

You must not alter any keyword assignments in qawserve.ini apart from those
documented in this manual.

The keyword assignments can come in any order. A typical keyword assignment
looks like this:

USAAddressLineCount=4

This tells QAS Pro to create an output address consisting of four lines for the USA
dataset.

Not all entries have to be keyword assignments. You can add comments by
prefixing the comment with a semi-colon (;).

The ; character must be the first character on the line that is being commented.

You can also add a replacement for any commented-out setting. For example,

;EngineTimeout=0

EngineTimeout=10

allows you to switch between settings by swapping the one which is commented
out as required.

187

The Configuration Process

When setting up QAS Pro API for the first time, it is recommended that you follow
the steps listed below:

1. Ensure that one (or more) dataset has been copied to a known location.

2. Configure an output format for the API to return a matched address (optional).

3. Specify whether error logging is enabled.

The first step involves checking settings in qawserve.ini. The second requires you
to specify keyword values in qawserve.ini, and the third step involves specifying
keywords in qaworld.ini.

The 'Default' documented for each setting refers to the product default. If a setting
is not defined in the qawserve.ini file, it will assume this default. Some settings
have been configured in the .ini file; these configurations will override the product
default.

To return the product to its shipping state, any changes that you have made to the
qawserve.ini file need to be discarded, and the file returned to its original
condition. Therefore, before you make any changes to this file, you should make a
copy of it so it can be recovered in the event that you need to return the product to
its shipping state. Alternatively, you can reinstall the product, which will have the
same effect.

If you are running the QAS Pro API in Client/Server mode, there are a number
of additional settings that must be specified in the qaworld.ini file. For more
information, refer to the Client/Server manual that was shipped with the
Client/Server version of QAS Pro.

188

Dataset Installation Settings
The file qawserve.ini is used to specify which datasets are available to QAS Pro,
and where they are installed. To modify these settings, open the file qawserve.ini
in a plain text editor. For Windows, this file can be found in the same directory as
the library files; for UNIX, this file can be found in the apps directory.

You can manually specify the location of the qawserve.ini file using the
QAWSERVE environment variable QAWSERVE = path-name.

The configuration keywords used to configure datasets are InstalledData and
DataMappings, located in the default section [QADefault] of the qawserve.ini file.
You may need to add these settings if they do not already exist.

InstalledData

Format:

InstalledData={identifier},{path}

Default:

Blank

Purpose:

This keyword lists the installed datasets by a three letter identifier and location.
These datasets are the ones installed by the setup program or copied across from
the supplied data CDs/DVDs. If you wish to change or add to them, you should
run the setup program again or copy them from the supplied medium. Note that if
you are also using Additional Datasets, they do not need to be listed in this
setting.

189

If you have more than one dataset installed, the first dataset appears directly after
the = sign, and each subsequent database appears on a new line preceded by a
+ sign.

For every line that you have specified here, you should also add a line in the
DataMappings setting.

Example:

If you have installed the UK, Australia and Netherlands datasets in C:\Program
Files\QAS\Data, this setting would appear as follows:

InstalledData=GBR,C:\Program Files\QAS\Data\

+AUS,C:\Program Files\QAS\Data\

+NLD,C:\Program Files\QAS\Data\

If you need to move one or more of your datasets, you should update this setting
accordingly.

190

DataMappings

Format:

DataMappings={identifier},{dataset/group name},{dataset+additional datasets}

Default:

Blank

Purpose:

This allows you to specify which datasets or groups of additional datasets you are
using, and what you want the identifier and name of the dataset or group of
additional datasets to. These are groupings are referred to as datamappings. The
identifier is a 3-digit alphanumeric code. You can specify both the dataset/group
name and the datamapping identifier.

Note that when you call the QA_GetData function for the primary API, the
identifier and names that are returned are the values specified in this setting.

If you add or remove datasets in the InstalledData setting, you should update
this setting accordingly.

Example:

If you have the InstalledData setting set up to include the UK, Australia and
Netherlands datasets in C:\Program Files\QAS\Data, and if you also have United
Kingdom Names, Gas and Electricity additional datasets and want to create
groups to search on different combinations of data simultaneously, this setting
might appear as follows:

DataMappings=GBR,United Kingdom,GBR

+GBN,United Kingdom With Names,GBR+GBRNAM

+UTI,United Kingdom With Utility,GBR+GBRGAS+GBRELC

+AUS,Australia,AUS

+NLD,Netherlands,NLD

191

Warning Settings
The warnings settings in qawserve.ini specify how long before a dataset or
licence expires the user will be warned. See "Licences" on page 5 and "Data
Updates" on page 13 for more information.

NotifyDataWarning

Format:

NotifyDataWarning={Integer}

Default:

62

Purpose:

This sets a threshold number of days in advance of the data expiry which, when
reached, triggers a warning to the user that they need to renew their data.

Example:

NotifyDataWarning=31

192

NotifyLicenceWarning

Format:

NotifyLicenceWarning={Integer}

Default:

0

Purpose:

This sets a threshold number of days in advance of the licence expiry which,
when reached, triggers a warning to the user that they need to renew their
licence.

Example:

NotifyLicenceWarning=31

193

Output Address Format Settings
These settings are found in the qawserve.ini file.

Each dataset has its own default address format, which conforms to local
standards. For example, the default American address contains the house
number followed by the street name, town name, state and ZIP code. The default
German address, on the other hand, contains the street name followed by house
number, postal code and town name. It is strongly recommended that you do not
edit the default address format; if you wish to create a different format to fit your
application, you should do so within a new configuration layout.

Identifiers

The settings in this section must all be immediately prefixed by a datamapping
identifier.

It is possible to define address formats for more than one datamappings within a
single configuration layout. Therefore, each of the settings in this section must be
directly prefixed with the identifier of the relevant datamapping. For example, the
setting CapitaliseItem for the Australia datamapping would become
AUSCapitaliseItem. An address format must be set up for each datamapping that
you have set up. Datamappings are set up with the DataMappings keyword (see
"Dataset Installation Settings" on page 189).

Element Codes

Address elements are specified in the QAS Pro API INI file using element codes.
Element codes are specific to (and only meaningful for) a particular dataset. A list
of element codes for each dataset can be found in the relevant Data Guide; for
example, the street element code in the US is S11, and the street name element
code is S112.

It is not necessary to specify every element in order for them to be visible within
the returned and formatted address. All standard elements will be returned in a
suitable place between any elements which have been fixed.

194

AddressLineCount

Format:

[identifier]AddressLineCount={integer}

Default:

0

Purpose:

This defines the number of lines in the formatted output address. The format of
each individual address line is specified with the AddressLineN keyword (see
below).

The number of lines you specify should take into account DataPlus information
lines that might be returned.

Example:

USAAddressLineCount=4

This tells QAS Pro to produce formatted output addresses of four lines for the
USA.

195

AddressLineN

Format:

[identifier]AddressLine[N]=W<width>,<element list>

Default:

Blank

Purpose:

This specifies which address elements should appear on which line. You can add
as many AddressLineN lines as you defined with the AddressLineCount
keyword (see above), each time replacing N with the appropriate line number. W
signifies that the number that follows it is the maximum width of the line in
characters, and <element list> is a comma-separated list of dataset-specific
element codes. By specifying an element code, you force QAS Pro to place that
element on that line (if the element exists in the matched address).

DataPlus elements are formed from the base name and the element name (see
example 2).

You can allow QAS Pro to automatically insert other suitable elements before,
after or between fixed elements by using the format specifier '…'

Example 1:

NLDAddressLine1=W40,S11,…

This instructs QAS Pro to give line 1 of a Netherlands output address a maximum
width of 40 characters. The street name is fixed to the line, and any subsequent
elements can also appear on the line if they fit there.

Example 2:

AUSAddressLine6=W40,AUSMOS.Desc

196

This tells QAS Pro to give line 6 of a Australian output address a maximum width
of 40 characters, and fix the description part of the MOSAIC DataPlus set to it.

Certain DataPlus elements contain imputed information by default. An imputed
field is one where data does not exist for all addresses. In this scenario, the gaps
in the data are filled in (imputed) using neighbouring data. Alternatively you can
specify that you do not want the data to be imputed.

For example:

GBRWPT.Party Standard DataPlus item

GBRWPT.Party.NotImputed If there is no available value in the raw data for this
DataPlus set for this address, this element will be
blank.

GBRWPT.Party.IsImputed The value of this item can be either Yes or No.
If this item has been taken directly from the raw
data, the value is No. Otherwise, the item has been
imputed by Experian QAS, and the value is Yes.

197

CapitaliseItem

Format:

[identifier]CapitaliseItem={element list}

Default:

Blank

Purpose:

This keyword defines which address elements should appear in upper case in the
formatted address. The value of the keyword is a list of element codes separated
by spaces.

Example:

AUSCapitaliseItem=P12 X11

Means that the building name and country name will be capitalised in Australian
output addresses.

198

AbbreviateItem

Format:

[identifier]AbbreviateItem={element list}

Default:

Blank

Purpose:

This keyword defines which address elements should be abbreviated in the
formatted address. The value of the keyword is a list of element codes, which
differ from dataset to dataset, separated by spaces.

Example:

AUSAbbreviateItem=L12

Means that the Australian state name will be abbreviated.

199

SeparateElements

Format:

[identifier]SeparateElements={boolean}

Default:

YES

Purpose:

This keyword specifies whether or not address elements on a single line are
separated, usually by commas. Set this keyword to NO if you do not want to
comma-separate address elements.

Example:

GBRSeparateElements=YES

Means that a UK street and locality on the same line would look like this:

Chester Road, Ash

If the keyword was set to NO, it would look like this:

Chester Road Ash

200

ElementSeparator

Format:

[identifier]ElementSeparator={separator sequence}

Default:

Blank, but is usually set in the ini file depending on the dataset.

Purpose:

This keyword defines which address elements and should be separated by
additional characters in the formatted address.

Example:

GBRElementSeparator=C11{ ^ }

Here the element separator would be blank before and after United Kindom
postcodes.

Element separators take precedence right over left. These settings can be
enabled or disabled with the keyword SeparateElements.

201

ElementExtras

Format:

[identifier]ElementExtras={element list}

Default:

Blank

Purpose:

Places additional characters around an address element. The format is: Element
code {extra characters^extra characters}.

Example:

USAElementExtras=L21{(^)}

This places brackets around element L21 (County Name in the United States
dataset).

202

TerminateLines

Format:

[identifier]TerminateLines={boolean}

Default:

NO

Purpose:

This keyword defines whether or not certain address lines are ended with a
comma.

Example:

GBRTerminateLines=YES

This means that a five-line UK address could look like this:

6 Cedar Grove,
Bisley,
WOKING,
Surrey,
GU24 9EF

If the keyword was set to NO, the commas would not appear.

203

LineTerminator

Format:

[identifier]LineTerminator={terminator sequence}

Default:

Blank

Purpose:

Use this to end specific address elements with a comma, if TerminateLines is
set to Yes.

Example:

AUSLineTerminator=C11{^} B11{, ^ }

In the example, C11 represents the postcode and B11 represents the PO Box for
Australian addresses. This setting is not to be applied before or after the postal
code or after PO Box (where nothing is used). A comma and space is used before
the PO Box. These settings can be enabled or disabled using the
TerminateLines keyword.

204

ExcludeItem

Format:

[identifier]ExcludeItem={element list}

Default:

Blank

Purpose:

Prevents an item from appearing in an address if it isn't fixed to a particular line.

Example:

DEUExcludeItem=C11

If the postcode has not been fixed to a specific line, then it will not appear in the
address, even though it is in the list of default address items.

205

FlattenDiacritics

Format:

[identifier]FlattenDiacritics={boolean}

Default:

NO

Purpose:

The Flatten Diacritics option allows you to replace all diacritic characters, such as
accents and umlauts, with their non-diacritic equivalents. For example, the Danish
address

Degnsgårdvej 1
7840 Højslev

would change to

Degnsgardvej 1
7840 Hojslev

if the FlattenDiacritics keyword is set to Yes.

Example:

ESPFlattenDiacritics=Yes

This means that all diacritic characters will be suppressed by QAS Pro.

206

CDFVariation

Format:

[identifier]CDFVariation={integer}

Default:

1

Purpose:

This keyword tells QAS Pro which Form of address to use when automatically
fitting address elements into the returned address. This is for datasets which
include more than one Form of address, such as the Netherlands, Belgium and
Finland datasets. For more information about Forms of address, see the Data
Guide that accompanies your dataset.

Example:

NLDCDFVariation=2

This example selects the second Form of address for the Netherlands dataset.
The three Forms of address for Netherlands addresses are Official, NEN and
TPG, so this setting would apply the NEN Form to your output addresses.

207

Comment

Format:

[identifier]Comment={text string}

Default:

Default View

Purpose:

This allows you to add a comment to a layout, which is displayed at the bottom of
the Select Layout dialog.

Example:

GBRComment=Custom Layout for the United Kingdom

208

MultiValueDPSeparator

Format:

[identifier]MultiValueDPSeparator={string}

Default:

|

Purpose:

This allows you set the delimiter used to separate returned multiple DataPlus
values.

Example:

GBRMultiValueDPSeparator=|

209

Error Logging Settings
Error logging can be used to help diagnose any problems preventing normal
operation of the QAS Pro API. Problems such as failure to start up the API can be
solved from observing the output to the log file.

Logging can be activated by modifying configuration settings in the [QADefault]
section of the qaworld.ini file.

If you are running the QAS Pro API in Client/Server mode, these settings will only
activate error logging on the client. For information about error logging on the
server, refer to the Client/Server manual.

LogFile

Format:

LogFile={filename}

Default:

None

Purpose:

The LogFile setting enables you to specify a log file to which any errors that
occur when you call API functions are written. These errors are only written if
LogErrors is set to YES (see below) as well as specifying the name of the file
you want to write to with LogFile.

It is recommended that you create a log file when integrating the API.

Example:

LogFile=error.log

210

This creates a log file called error.log in the same directory as the program files.
You can also specify the full path of the file to write logging to.

211

LogErrors

Format:

LogErrors={boolean}

Default:

NO

Purpose:

This keyword specifies whether or not error logging is enabled. If LogErrors is
set to YES, the LogFile keyword must contain a valid file path and name.

Example:

LogErrors=NO

This means that no errors are logged, even if a file name has been specified in
LogFile.

212

Search Options And Results Settings
These settings are found in the qaworld.ini file.

EngineTimeout

Format:

EngineTimeout={integer}

Default:

0

Purpose:

This is the length of time (in milliseconds) that QAS Pro will spend on a search
before it returns a timeout flag. The default setting of 0 sets a timeout to infinity.
Increasing this limit may lead to long searches taking up system resources.

Example:

To set a timeout period of 30 seconds (30,000 milliseconds), you would use
EngineTimeout=30000

213

SLMaxMatches

Format:

SLMaxMatches={Integer}

Default:

1000

Purpose:

This defines the maximum number of matches (picklist entries) that can be
returned by the single-line search engine. The maximum value is 1000. If this is
set to 0, the maximum value will be used.

The higher the limit set, the longer the search will be if many suitable results are
found, and, correspondingly, more system resources will be used.

Note that a certain amount of approximation applies to this limit due to the way
that common matches can get merged together to form single picklist entries.

Example:

SLMaxMatches=100

214

ShowAllThreshold

Format:

ShowAllThreshold={Integer}

Default:

750

Purpose:

When a picklist is returned in QAS Pro that contains more items than the picklist
threshold (set by the ini keyword UPIThreshold), one of two informational
prompts will be displayed:

If the number of potential picklist items is below the ShowAllThreshold setting,
the first 'Continue typing (or select to show all matches)' prompt is displayed. The
user can step into the informational prompt to display all available matches.

If the number of potential matches is above the ShowAllThreshold value, the
second 'Continue typing (too many matches)' prompt is displayed instead. The
user must continue typing to refine the search and so decrease the number of
potential matches. When the number of potential matches falls below the
ShowAllThreshold value, they can then step into the informational prompt to
show all matches.

The maximum value for the ShowAllThreshold setting is 1000.

The higher the limit that is set when you are running the QAS Pro API in
Client/Server mode, the more network resources will be used.

Note that a certain amount of approximation applies to this limit due to the way
that common matches can get merged together to form single picklist entries.

215

Example:

ShowAllThreshold=50

216

UPIThreshold

Format:

UPIThreshold={Integer}

Default:

25

Purpose:

This defines the number of matches (picklist entries) that can be displayed in a
picklist returned by the search engine. If this limit is exceeded, an informational
prompt will be displayed, requesting the user to enter refinement text or to select
the informational prompt to display all available matches.

The maximum value for this setting is 1000.

Example:

UPIThreshold=35

217

EngineIntensity

Format:

EngineIntensity={integer}

Default:

1

Purpose:

This keyword controls the degree of 'fuzzy' matching used when searching for
addresses as specified by the input search terms. Possible values are as follows

Setting Description

0 Exact

1 Default fuzzy matching

2 Extensive fuzzy matching

The fuzzy matching engine will start at the default setting, and look for a match to
the input search terms. This can be CPU intensive if it is above 0 (Exact). If no
matches are found, it will proceed through the levels up to and including level 2
(or until EngineTimeout occurs) before giving up.

You can choose between 'standard' and 'intensive' search options using the
QAS Pro user interface, but the changes may not appear in the
EngineIntensity setting. This is because the API checks the presence of the
following registry key: HKEY_CURRENT_USER\Software\QAS
Systems\QAS Pro\UserIni\QADefault. If this key exists, the API writes the
settings in the registry key, and does not change the INI file. If the registry key is
not found, the API changes the EngineIntensity keyword in the INI file.

Example:

EngineIntensity=0

218

MultiElementLabels

Format:

MultiElementLabels={boolean}

Default:

No

Purpose:

This keyword defines whether or not to return address labels, where multiple
address elements have been fixed to a single line. See QA_GetFormattedLine
on page 102 for more information on how to return the labels for address
elements that are fixed to a line.

If this keyword is set to Yes, the address elements are returned separated by
commas. If it is set to No, blank labels are returned for such address lines.

Example:

MultiElementLabels=Yes

219

ForceAccept

Format:

ForceAccept={character}

Default:

!

Purpose:

The Primary API uses this keyword to define the character that the user can type
at the end of the premises/sub-premises information, to force the data to be
accepted as a match. If you do not define a character, the feature is disabled.

Alternatively you can use the vsExtra parameter ofQA_FormatResult (see page
89).

Example:

ForceAccept=$

220

OemCharacterSet

Format:

OemCharacterSet={text string} [NoDiacritics]

Default:

ANSI

Purpose:

The QAS Pro API includes support for character sets that contain non-standard
characters, such as diacritics (for example, accents and umlauts). The API also
provides the ability to remove diacritic characters on address output.

The API needs to know which (OEM) character set the calling application is using.
The character set can be configured using the following values in the qaworld.ini
file:

l Text string — a string that indicates the generic character family. The default
value is ANSI code page 1252 (Latin 1).

l NoDiacritics — a string that indicates that all diacritic characters have been
replaced with their non-diacritic equivalents.

The following character sets are supported by QAS Pro. They are 8-bit character
sets and can support diacritics and multiple code pages:

Family Description

ANSI The character sets as defined by the American National
Standards Institute.

ASCII As above but without diacritics.

DOS DOS code page 850.

Example:

OemCharacterSet=DOS NoDiacritics

221

Informational Prompt Settings
These settings are found in the qaworld.ini file.

NoMatchesMessage

If you are using the UI API, you should use the UINoMatchesMessage setting
instead of this one.

Format:

NoMatchesMessage={text string}

Default:

Address not recognised (type '!' to accept).

Purpose:

The Primary API uses this setting to define the prompt to display when returning
property level information that cannot be matched against an address. If this
setting is left blank, then the feature is disabled. Note that the accept character, '!'
by default, is set with the ForceAccept setting (see "Search Options And Results
Settings" on page 213).

Example:

NoMatchesMessage=Unrecognised address (type '$' to accept)

222

Other INI Keywords
The following INI keywords, although present in either qawserve.ini or
qaworld.ini, should not be edited:

l AllowPartialAddress

l CDFVersion

l Configured

l DataplusLines

l InvalidateAncillary

l LastEdited

l PaddingCharacter

l PasteFooter

l PasteHeader

l PasteKeyBegin

l PasteKeyEnd

l PasteLine

l PasteLineX

l PasteMode

l PasteSelect

l PasteSelectX

l PasteSpeed

l ReadOnlyAddress

l UsedByProPnG=No

l UsedByProAPIUI=Yes

l UsedByProAPIPrimary=Yes

l UsedByProWeb=No

l UsedByProServer=No

l UsedByBatch=No

l UsedByBatchAPI=No

223

Error Code Listing

Below is a full list of error codes and their descriptions. Call the system function
QAErrorMessage (see page 178) to retrieve the message associated with the
returned error code, and QAErrorLevel (see page 179) to ascertain whether the
error is serious or a warning.

Some of the error codes are documented in more detail later in this chapter.

Code Message Explanation

-1000 qaerr_FATAL Fatal error

-1001 qaerr_NOMEMORY Out of memory

-1002 qaerr_INITINSTANCE Invalid multi-threading instance

-1005 qaerr_INITOOLARGE INI file too large

-1006 qaerr_ININOEXTEND Cannot extend INI file

-1009 qaerr_FILECHGDETECT Cannot detect file changes

-1010 qaerr_FILEOPEN File not found

-1011 qaerr_FILEEXIST File already exists

-1012 qaerr_FILEREAD File read failure

-1013 qaerr_FILEWRITE File write failure

-1014 qaerr_FILEDELETE Could not delete file

-1015 qaerr_FILERESV Reserved device

-1016 qaerr_FILEACCESS File access denied

-1017 qaerr_FILEVERSION Incorrect version of data file

-1018 qaerr_FILEHANDLE Maximum number of files open

-1019 qaerr_FILECREATE Could not create file

-1020 qaerr_FILERENAME Could not rename file

225

Code Message Explanation

-1021 qaerr_FILEEXPIRED Data file has expired

-1022 qaerr_FILENOTDEMO Can only access demonstration
data

-1023 qaerr_FILETIMEGET Failed to obtain file timestamp

-1024 qaerr_FILETIMESET Failed to modify file timestamp

-1025 qaerr_READFAIL Disk read failure

-1026 qaerr_WRITEFAIL Disk write failure

-1027 qaerr_BADDRIVE Invalid drive

-1028 qaerr_BADDIR Invalid directory

-1029 qaerr_DIRCREATE Could not create directory

-1030 qaerr_BADOPTION Invalid command line option

-1031 qaerr_BADINIFILE Could not locate INI file

-1032 qaerr_BADLOGFILE Could not create log file

-1033 qaerr_BADMEMORY Invalid memory configuration

-1034 qaerr_BADHOTKEY Invalid hot key

-1035 qaerr_HOTKEYUSED Hot key already in use

-1036 qaerr_BADRESOURCE Could not locate language file

-1038 qaerr_BADTEMPDIR Bad temporary directory

-1040 qaerr_NOTDEFINED Entry not defined

-1041 qaerr_DUPLICATE Entry duplicated

-1042 qaerr_BADACTION Invalid (list) action

-1050 qaerr_CCFAILURE Copy control failure

-1051 qaerr_BADCODE Invalid copy control code

-1052 qaerr_CCACCESS Copy control access denied

-1053 qaerr_CCNODONGLE Dongle not configured

-1054 qaerr_CCNOUNITS No units left on meter

-1055 qaerr_CCNOMETER Meter not initialised

-1056 qaerr_CCNOFEATURE Feature not supported

-1057 qaerr_CCINVALID Softkey integrity failure

-1060 qaerr_CCINSTALL Copy control not installed

226

Code Message Explanation

-1061 qaerr_CCEXPIRED Allowable time expired

-1062 qaerr_CCDATETIME Date / time is invalid

-1063 qaerr_CCUSERLIMIT Number of concurrent users
exceeded

-1064 qaerr_CCACTIVATE Copy control installed but not
activated

-1065 qaerr_CCBADDRIVE Invalid copy control drive

-1066 qaerr_CCREGISTER Product must be registered

-1070 qaerr_UNAUTHORISED Not authorised

-1074 qaerr_NOLOCALEFILE Locale file not found

-1075 qaerr_BADLOCALEFILE Invalid locale file

-1076 qaerr_BADLOCALE Unknown language / country

-1077 qaerr_BADCODEPAGE Unknown code page

-1078 qaerr_RESOURCEFAIL Resource lookup failure

-1080 qaerr_NOTHREAD Invalid thread handle

-1081 qaerr_NOTLSMEMORY Out of thread-local-storage

-1090 qaerr_NOTASK Could not create task

-2300 qawdperr_BADFUNCTION Bad function code to library

-2301 qawdperr_NOKERNEL Kernel must be pre-initialised

-2302 qawdperr_NOTFOUND One or more DataPlus items not
found

-2303 qawdperr_BADLEADIN Internal or data error

-2304 qawdperr_NOPLUGIN Plug-in not found for this
DataPlus set

-2305 qawdperr_ISOPEN DataPlus file already open by this
DataPlus handle

-2306 qawdperr_BADENTRY Bad DataPlus entry detected
(data error)

-2307 qawdperr_NOTOPEN DataPlus set is not open

-2308 qawdperr_NOCOUNTRY No country code specified

-2309 qawdperr_PLUGINIT Problem initialising plug-in

227

Code Message Explanation

-2310 qawdperr_PLUGBADARG Bad argument to plug-in - no
result returned

-2311 qawdperr_NEWFORMAT New file format detected

-2400 qallderr_BADFUNCTION Bad function code

-2401 qallderr_NOKERNEL Kernel is not initialised

-2402 qallderr_BADHEADER Bad object header detected

-2403 qallderr_NOOBJSIZE No object size (internal error)

-2404 qallderr_NOMOREOBJECTS No more objects (result of
attempted move)

-2405 qallderr_BADDICT Bad dictionary entry detected

-2406 qallderr_BADDATA Bad compressed data detected in
rds

-2407 qallderr_INTDPPROB More than one DataPlus item
returned from lookup

-2408 qallderr_MAXDPLITEMS Too many DataPlus references

-2409 qallderr_NONAMES Can't open Names DataPlus set

-2410 qallderr_BEYONDEOF Offset is beyond end of file

-2411 qallderr_BADOBJCHAIN Invalid object chain from this
object position

-2412 qallderr_BADRANGETYPE Invalid range type detected

-2413 qallderr_BADRANGESTART Bad range start value detected

-2414 qallderr_ADSALREADYOPEN Requested ADS is already open

-2415 qallderr_DELTADELTACOMP Error decompressing delta-delta
index

-2416 qallderr_NOADSFORDTS DTS reference not found in delta-
delta index for this ADS

-2417 qallderr_NOADSFORADS ADS reference invalid for this
ADS

-2450 qacerr_BADFUNCTION Bad function code

-2451 qacerr_BADCCLASS Comms class not found

-2452 qacerr_NOLISFUNC Listen function not specified in
listen request

228

Code Message Explanation

-2453 qacerr_CCNOTIMP Specified comms class is not yet
implemented

-2454 qacerr_ALRDYLIST Already listening on the specified
port

-2455 qacerr_BADTFUNC Bad transport function called
(internal error)

-2456 qacerr_NOLISTENER Destination is not listening

-2457 qacerr_BADHANDLE Invalid handle specified

-2458 qacerr_CANCELLED Connection was cancelled
remotely

-2459 qacerr_NOBUFFER Attempted to take a size of an
uninitialised buffer

-2460 qacerr_GETINSCHAR Get called but there are
insufficient characters

-2461 qacerr_NOKERNEL Kernel is not initialised

-2462 qacerr_NOTXN Can't call send or receive unless
a transaction is in progress

-2463 qacerr_NOTXNNUM A transaction must have a non-
zero transaction number

-2464 qacerr_TERMINATED Talk was cancelled in the
transaction callback

-2465 qacerr_NOREGFUNCTION No registered function was found
for this transaction number

-2466 qacerr_NOTXNMESSAGE Receive called but no message
waiting

-2467 qacerr_NOSERVERMEMORY No server memory during
transaction processing

-2468 qacerr_ATMAXBUFFER Maximum transaction buffer size
reached

-2469 qacerr_NOTLISTENHAND Comms handle specified is not a
listen handle!

-2470 qacerr_SERVERFULL Maximum server connection
count exceeded

-2471 qacerr_DELETESELF Can't delete own connection

229

Code Message Explanation

-2472 qacerr_TIMEDOUT A connection's transaction has
timed out

-2473 qacerr_SCANLOCK Scan already in progress on
another instance

-2474 qacerr_VSNNOTSUPPORTED This version not supported at
server

-2507 TCPIP_CONNECTFAIL The connect attempt failed

-2508 TCPIP_TRANSTHREADFAIL Transmission thread failure

-2511 TCPIP_INSTANCENOTFOUND Using invalid connection instance

-2514 TCPIP_TRANSTHREADFULL Transmission thread message
queue full

-2517 TCPIP_LISTENTHREADNOTINIT The expected listen thread was
not found

-2519 TCPIP_INVALIDMSGTYPE Received invalid message type

-2520 TCPIP_MSGCORRUPTED Received corrupted message

-2521 TCPIP_MSGQUEUEFULL Outgoing message queue full

-2524 TCPIP_GETMOREDATA Retrieving more data

-2526 TCPIP_CANCELLED Connection cancelled remotely

-2549 TCPIP_LISTENSTRUCT Failed to create listen data or
administrator

-2900 qadcperr_BADFUNCTION Bad function code

-2901 qadcperr_NOKERNEL Kernel is not initialised

-2902 qadcperr_NOREGFUNCTION Function number not recognised
by server glue

-2903 qadcperr_
CANTCREATEINSTANCE

Can't create server instance

-2904 qadcperr_REINITIALISE No initialisation instance found for
this client

-2905 qadcperr_BADHANDLE Bad client dataplus handle
specified

-2906 qadcperr_SERVERPROBLEM Error at server

-2907 qadcperr_INVALIDHANDLE Dataplus handle invalid

230

Code Message Explanation

-2908 qadcperr_BADCODE Bad format for dataplus set code

-2909 qadcperr_SETNOTOPEN Dataplus set is not open

-2910 qadcperr_CLIENTPLUGINERR Error at client plug-in

-3400 qaerr_INVALIDCOUNTRYINDEX Invalid index into UIGetCountry

-3401 qaerr_INVALIDLAYOUTINDEX Invalid index into UIGetLayout

-3402 qaerr_UNKNOWNLAYOUTNAME Unknown layout name in
UISetActiveLayout

-3403 qaerr_
UNKNOWNCOUNTRYCODE

UIStartup with unknown ISO code

-3404 qaerr_
NOSEARCHENGINESAVAILABLE

Fatal case of the UF reporting no
engines available

-3405 qaerr_CANTCHANGEDATABASE The more common
invalid/unknown ISO code error

-3406 qaerr_UIAPIALREADYSTARTED Multiple calls to UIStartup

-3407 qaerr_UIAPINOTSTARTED UIStartup not called

-3408 qaerr_UIBADSEARCHSTRING No longer used

-3409 qaerr_UIBADCDFFORMAT No longer used

-3411 qaerr_INVALIDLINEINDEX Invalid index into
UIGetLayoutLineElements

-3412 qaerr_NOSELECTEDLAYOUT No layout in use during call to
UIGetLayoutLineElements

-3413 qaerr_NOLIVESERVER Fatal comms error

-3414 qaerr_BADCONFIGFLAGS Bad combination of config flags

-3415 qaerr_CANTCHANGEENGINE Failed to change search engine

-3416 qaerr_NOUFACTIVE Internal error

-3417 qaerr_UFINVALIDSTATE Internal sequence error

-3418 qaerr_UILICENSINGERROR Licensing failure has occurred
with one or more data sets

-3450 qaerr_BADFUNCTION Bad function number

-3451 qaerr_NOKERNEL No kernel initialised at library call

-3452 qaerr_NOTPRESENT Shared entity not present

231

Code Message Explanation

-3600 qaerr_INITFAILURE QAS TCP/IP failure

-3601 qaerr_CLEANUPFAIL Sockets failed to clean up
properly

-3602 qaerr_ACCEPTFAIL Error accepting remote
connection

-3603 qaerr_SOCKETBIND Failed to bind socket

-3604 qaerr_LISTENFAIL Failed to initialise the listen

-3605 qaerr_TALKFAIL Failed to initialise the talk

-3606 qaerr_SOCKETFAIL Failed to create socket

-3607 qaerr_CONNECTFAIL (TCP/IP talk socket) failed to
connect to target

-3608 qaerr_ADDRESSERROR Error looking up remote
hostname or address

-3609 qaerr_SENDERROR Error sending data

-3610 qaerr_RECVERROR Error receiving data

-3611 qaerr_SELECTERROR Error during processing of socket
select for pending data

-3612 qaerr_TOOLARGE Message is too large to be
transmitted by protocol

-3613 qaerr_PORTINUSE Specified port number already in
use / Non-reusable

-3614 qaerr_CONNECTREFUSED Could not connect to remote host

-3615 qaerr_CONNECTIONCLOSED Connection has been lost

-3616 qaerr_SOCKOPTERROR Error setting socket option

-3617 qaerr_WAITTIMEDOUT Wait timed out

-3618 qaerr_HOSTNOTFOUND Host not found

-3622 qaerr_WOULDBLOCK Socket would block

-3623 qaerr_UNEXPECTED Unhandled error: please inform
Experian QAS Technical Support

-3625 qaerr_WSAEINVAL Invalid function or argument for
socket

232

Code Message Explanation

-3627 qaerr_NOSOCKETS (The listen thread has) no sockets
attached

-3701 qaerr_CDFSYNTAX Invalid CDF syntax

-3702 qaerr_BADCDFORDER Inaccurate item order in CDF

-3703 qaerr_BADCDFITEM Item in CDF is invalid

-3704 qaerr_
INVALIDADDRESSEXAMPLE

Invalid address example

-3705 qaerr_INVALIDCDFOBJECT Invalid CDF object

-3706 qaerr_INVALIDABBREV Invalid abbreviation

-3708 qaerr_NOSUCHVARIATION CDF does not have this many
variations

-3709 qaerr_OBJECTDEFINITION Objects incorrectly defined

-3710 qaerr_UNKNOWNOFFSET Offset supplied was out of range

-3711 qaerr_INVPARSEERR Push invalid parse has failed

-3801 qaerr_FORMATSYNTAX Incorrect formatting syntax

-3802 qaerr_TOOMANYADDRLINES Too many address lines
requested

-3803 qaerr_INVALIDADDRESSLINE Address line out of range

-3804 qaerr_NOFORMATSPEC No format spec in INI file

-3805 qaerr_FORMATOVERFLOW Format(s) have overflowed

-3806 qaerr_FORMATTRUNCATED Format(s) are truncated

-3807 qaerr_BADCDFVERSION CDF version incompatible with
format

-3808 qaerr_UNKNOWNDPITEM Incorrect DataPlus item name

-3809 qaerr_DPFAILURE One or more DataPlus sets failed
to open

-3810 qaerr_PREMISENEEDED Enter premise details

-3811 qaerr_NEEDRANGEOFFSET You need to enter number details
within a range

-4300 qaerr_UFHANDLING Engine would like UF to take over

233

Code Message Explanation

-4301 qaerr_UFNOTHANDLING UF would like engine to handle
again

-4302 qaerr_NOUFGLUEINSTANCE Glue not initialised

-4303 qaerr_UFNOHK Housekeeping unavailable

-4304 qaerr_UFNOFUNC Requested function unavailable

-4306 qaerr_UFCANTSTEP Can't step in

-4307 qaerr_UFITEMRANGE Chosen picklist item out of range

-4308 qaerr_UFLAYOUTRANGE Invalid layout handle given

-4309 qaerr_NOUF NULL handle given

-4310 qaerr_NOUFSEARCH No search in progress

-4311 qaerr_ENGINEUNAVAILABLE Engine cannot be selected

-4312 qaerr_UFCANCELLED An action has been cancelled

-4313 qaerr_UFNOLAYOUT No layout matched that supplied

-4314 qaerr_INEXACTUNAVAILABLE Inexact matches go beyond
threshold

-4315 qaerr_NODATAAVAILABLE Data unavailable at this level

-4316 qaerr_MOREINEXACT Data unavailable at this level

-4317 qaerr_CANTSTEPIN Can't step in

-4318 qaerr_CANTSTEPOUT Can't step out

-4319 qaerr_BADOPTIONS Options value(s) wrong

-4320 qaerr_NOENGINESUPPORT Underlying engine doesn't
provide this function

-4321 qaerr_BADSEQUENCE Functions called out of sequence

-4322 qaerr_MONIKER_BADVERSION UF does not recognise this
moniker's version number

-4323 qaerr_MONIKER_BADMESSAGE UF does not recognise this
moniker's message number

-4324 qaerr_MONIKER_WRONGENGINE Current UF instance is not using
this moniker's engine

-4325 qaerr_MONIKER_
WRONGCOUNTRY

Current UF instance is not using
this moniker's country

234

Code Message Explanation

-4326 qaerr_MONIKER_
WRONGDATAVERSION

Current UF instance is not using
this moniker's data version

-4327 qaerr_MONIKER_BADOFFSET This moniker has a zero offset

-4328 qaerr_BADCOUNTRYBASEPATH The option for the country
basepath is bad

-4329 qaerr_BADPROMPTSETINDEX The prompt set parameter was
invalid (not 0..2)

-4330 qaerr_MONIKER_BADFORMAT UF does not recognise this
moniker's format

-4331 qaerr_MONIKER_BADEXAMPLE The example number in this
moniker is out of range

-4361 qaerr_CANTFORMATITEM The informational item cannot be
formatted (eg "No matches").

-4362 qaerr_NODATAMAPPINGS No (valid) datamappings can be
found in the QAWSERVE.ini file.

-4363 qaerr_MISSINGDATAMAP The QAWSERVE.ini file contains
no datamappings for this request.

-4364 qaerr_NOLAYOUTSELECTED No layout is currently selected,
but the API is expecting one.

-4501 qaerr_TOOMANYINSTANCES Maximum number of open
handles have been created

-4503 qaerr_MAXRESOURCES Maximum resource limit reached
for resource store

-4551 qaerr_OPENFAILURE Failed to create an API instance

-4552 qaerr_APIHANDLE Instance handle invalid

-4553 qaerr_OUTOFSEQUENCE Function called out of sequence

-4554 qaerr_INSTANCEBUSY Instance handle already being
used

-4556 qaerr_BADINDEX Index not within valid range

-4557 qaerr_BADVALUE A value passed was not valid

-4558 qaerr_BADPARAM Invalid parameter passed to API

-4559 qaerr_PARAMTRUNCATED API output truncated

235

Code Message Explanation

-4560 qaerr_NOENGINE Search engine is unavailable for
this dataset

-4561 qaerr_BADLAYOUT The active layout is invalid

-4562 qaerr_BADSTEP Step-in/Step-out not allowed on
item

-4570 qaerr_DATASETNOTAVAILABLE Dataset cannot be used

-4571 qaerr_LICENSINGFAILURE Licensing failure has occurred
with one or more data sets

-4580 qaerr_SERVERCONNLOST Lost connection to the server.
Transaction timed out or server
error

-4581 qaerr_SERVERFULL The maximum number of server
connections has been reached

-8300 qaerr_CTDIFUNC Unknown client function

-8301 qaerr_CTDINOKERNEL No kernel instance on client

-8304 qaerr_CTDIBOTTOM Item is not steppable

-8305 qaerr_CTDISERVERERR Typedown server error (reported
by client)

-8400 qaerr_NOTDGLUEINSTANCE No Typedown glue instance

-8401 qaerr_TDIFUNC Unknown server function

-8402 qaerr_TDINOKERNEL No kernel instance on server

-8403 qaerr_TDINOMATCH No match

-8404 qaerr_TDIINDEXERROR Error in typedown index

-8405 qaerr_THRESHOLDTOOLLOW Threshold was below minimum

-8406 qaerr_TDINOHK Housekeeping is not initialised

-8407 qaerr_TDINONAMES Names cannot be opened

-8408 qaerr_TDCANCELLED Typedown search was cancelled

-8409 qaerr_TDDISCONNECT Typedown search was
disconnected

-8410 qaerr_TDSSWOPFAIL Typedown swap failed

-8411 qaerr_NORESULTS Results unexpectedly not present

-8412 qaerr_EMPTYBITMAP Bitmap was empty

236

Code Message Explanation

-8413 qaerr_TOOMUCHDATA Comms exceeded

-8500 qaerr_HOUSEFUNC Bad function code

-8501 qaerr_HOUSENOKERNEL Kernel is not initialised

-8502 qaerr_REMOTEINLOCK Remote INI file is locked

-8650 qaerr_ZLCFUNC Function unavailable

-8651 qaerr_ZLCNOKERNEL Kernel not initialised

-8652 qaerr_ZLCDISTANCE Maximum search range cannot
be less than minimum

-8653 qaerr_ZLCBADTERM Search term must contain at least
one letter or number

-8654 qaerr_ZLCNOMEMORY Client out of memory

-8655 qaerr_ZLCTOOMANYMATCHES Too many matches found

-8660 qaerr_ZLCABORT Search cancelled

-8661 qaerr_ZLCTIMEOUT Search timed out

-8750 qaerr_ZLSFUNC Unknown function

-8751 qaerr_ZLSNOKERNEL Kernel not initialised

-8752 qaerr_ZLSABORT Search aborted

-8753 qaerr_ZLSTOOMANYMATCHES Too many matches found

-8754 qaerr_ZLSTIMEOUT Search timed out

-11500 qaerr_LICFILENOTFOUND Licence File not found

-11501 qaerr_INVALIDLICENCEKEY Invalid licence key

-11502 qaerr_LICENCECONFLICT Conflicting licences found in
licence file

-11510 qaerr_LICENCENOTFOUND Licence not found

-11511 qaerr_LICENCEEXPIRED Licence expired

-11512 qaerr_EVALUATIONEXPIRED Evaluation licence expired

-11520 qaerr_BADINPUTPARAM Invalid input parameter

-11521 qaerr_INVALIDDATE Invalid date

General Errors: -1000 to -1001

qaerr_FATAL

237

This should not occur unless your application encounters an unexpected
condition. The API will abort.

qaerr_NOMEMORY

You will encounter this if QAS Pro API begins a task and subsequently
discovers that there isn’t enough memory available to complete it. For
example, memory may run out during a complicated search, or if insufficient
system resources are available.

If your application receives this error, a possible course of action is to produce
a message asking the user to close down one or more applications in an
attempt to free enough memory for QAS Pro API.

File Errors: -1010 to -1021

qaerr_FILEVERSION

This occurs if the data files that comprise a dataset have different version
numbers. Reinstall your data to ensure that you have the latest versions of all
files.

qaerr_FILEEXPIRED

This occurs if a dataset has expired. You can check how many days are left
before expiry with the function QA_GetLicensingDetail (see page 109). If this
error occurs, contact Experian QAS for a data update.

Startup Errors: -1030 to -1074

qaerr_BADOPTION

This indicates that an invalid command line parameter has been used. Enter
the correct parameter to continue.

qaerr_BADINIFILE

This means that QAS Pro API cannot open the configuration file. This
happens when the API fails to find the configuration file in any of the
designated search paths. The default configuration file is qaworld.ini unless
you specify otherwise in your call to QA_Open (see page 131).

QAS Pro looks for the configuration file in the following manner:

238

If a full path or filename was specified in your call to QA_Open, then the API
looks along this path for the configuration file. If it is unable to find the file, it
returns the error qaerr_BADINIFILE.

Otherwise the API looks for the configuration file in the current directory and
then, if necessary, it searches for it along the path. If it has still not found a
configuration file, then it returns this error.

Failure to open the configuration file will prevent QAS Pro from initialising.

qaerr_BADLOGFILE

If you get this error, the API has been unable to create the log file that you
specified. Check the LogFile setting in the configuration file to ensure that the
path and filename are valid.

qaerr_BADRESOURCE

The API cannot locate the language resource files, or the language resource
files are corrupt. Check that they are in the correct location and that they are
the correct version for your application. A missing configuration file may also
cause this error to be returned. If the INI file is available, ensure that it is in the
correct location, and that the Language setting is a correct value for this
version of the API.

qaerr_BADDATADIR

This appears when an invalid data directory has been specified. You will
encounter this error if the keyword InstalledData includes a directory
which does not exist or does not contain a dataset. If your application
receives this error, ensure that all directory and file names for the
configuration setting InstalledData and DataMappings, located in
qawserve.ini (see "Dataset Installation Settings" on page 189) are correct.

qaerr_NOLOCALE FILE

This appears if you attempt to start QAS Pro without the localisation file
qalcl.dat in the program directory. Locate this file on your computer, or copy
the file across from the CD.

Pro UI API Errors: -3400 to -3412

qaerr_INVALIDCOUNTRYINDEX

239

This error occurs if the viIndex parameter in a call to QAProWV_
UIGetCountry (see page 154) is out of range. Ensure that the index number
is valid, remembering that all indexes in the API are zero-based (i.e. the first
country in a list should be retrieved by setting viIndex to 0, the second by
setting it to 1, etc.).

qaerr_INVALIDLAYOUTINDEX

This error occurs if the viIndex parameter in a call to QAProWV_UIGetLayout
(see page 157) is out of range. Ensure that the index number is valid,
remembering that all indexes in the API are zero-based (i.e. the first layout in
a list should be retrieved by setting viIndex to 0, the second by setting it to 1,
etc.).

qaerr_UNKNOWNLAYOUTNAME

The layout name specified in a call to QAProWV_UIGetActiveLayout (see
page 153) is not available in the current configuration file. You can check
which layouts are available with the function QAProWV_UIGetLayout (see
page 157).

qaerr_CANTCHANGEDATABASE

The country identifier specified in a call to QAProWV_UISetActiveCountry
(see page 169) is not valid, either because it does not exist or the relevant
dataset is not available. Ensure that you have installed the database that you
want, and that the country identifier is correct.

qaerr_UIAPIALREADYSTARTED

The API is already running. This error is returned from QAProWV_UIStartup
(see page 173) if it has been called previously and not yet shut down.

qaerr_UIAPINOTSTARTED

The API has not been started. Call QAProWV_UIStartup (see page 173) to
start the API before calling any other functions.

qaerr_UIBADCDFFORMAT

240

This error is returned from QAProWV_UIStartup (see page 173) if none of the
datasets can be initialised properly, due to an invalid <country identifier.dts>
file. Ensure that your datasets have been installed correctly, and that each file
has the same date.

qaerr_UINOCOUNTRIES

No valid datasets have been installed. See "Dataset Installation Settings" on
page 189 or use the Configuration Editor to install datasets.

qaerr_INVALIDLINEINDEX

This error is returned from QAProWV_UILayoutLineElements (see page
164) if the viIndex parameter is out of range. Ensure that the index number is
valid, remembering that all indexes in the API are zero-based (i.e. the first line
in a layout should be retrieved by setting viIndex to 0, the second by setting it
to 1, etc.).

qaerr_NOSELECTEDLAYOUT

This error is returned from QAProWV_UILayoutLineElements (see page
164) if you have not selected a layout to use. You can select a layout with
QAProWV_UISetActiveLayout (see page 170).

qaerr_NOLIVESERVER

Could not find a valid configuration (or active server in Client Server
installation). Can be returned during QAProWV_UIStartup (see page 173) or
immediately after any Client / Server breakdown.

qaerr_BADCONFIGFLAGS

A nonsensical combination of flags was specified (e.g. deny change to search
engine, and not specify an engine explicitly) Can be returned during
QAProWV_UIStartup (see page 173) or QAProWV_UISetFlags (see page
171).

qaerr_CANTCHANGEENGINE

241

An error possible when unable to change to a specified engine, or keep
existing search engine when changing country. Can be returned during
QAProWV_UIStartup (see page 173),QAProWV_UISetFlags (see page
171), or QAProWV_UISetActiveCountry (see page 169).

CDF Errors: -3701 to -3809

If you encounter an error starting with -37…, you should contact Technical
Support for further assistance.

qaerr_FORMATSYNTAX

qaerr_TOOMANYADDRLINES

qaerr_NOFORMATSPEC

These errors all signify a problem with the address format specified in the
configuration file. Check that the configuration AddressLineN setting (see
"Output Address Format Settings" on page 194) contains a suitable format for
returning addresses, and that the number in the AddressLineCount setting
is the same as the number of lines defined in AddressLineN.

qaerr_INVALIDADDRESSLINE

This error means that you are trying to retrieve an address line which is out of
range. This might occur if, for example, your address format contains five lines
and you call QA_GetFormattedLine (see page 102) with the viLine
parameter set to 5. The range for an address with five lines would be 0 to 4.

qaerr_FORMATOVERFLOW

qaerr_FORMATTRUNCATED

If you encounter either of these errors, the retrieved address does not fit into
the address format you have specified in the configuration file. For example,
the returned address might be seven lines long whereas you have configured
a five-line format, or one line might have 45 characters and cannot fit onto a
line configured as 40 characters wide.

242

If you get several addresses that are truncated in this manner, you should
review the address format settings AddressLineCount and AddressLineN
(see "Output Address Format Settings" on page 194) in the configuration file
to ensure that they meet your needs.

qaerr_UNKNOWNDPITEM

This error means that you are trying to retrieve a DataPlus item which does
not exist. Check the DataPlus lines in your AddressLineN setting (see
"Output Address Format Settings" on page 194) are correct.

qaerr_DPFAILURE

This is a warning that one or more DataPlus items has not been returned.
This usually occurs if there is no information relating to the address that you
have selected, and does not affect the returned address or any other
DataPlus details.

qaerr_BADSEQUENCE

This error is sent back when the programmer calls functions in the wrong
order.

243

Utilities

The following utility is available with QAS Pro and can be used to check the
quality of your data.

Data Checker
You can check the integrity of Experian QAS data files using quchkn.exe.

Quchkn.exe is called as follows:

Syntax QUCHKN
(filespec)
QUCHKN -log -?

Show all command line options.

Example QUCHKN H:\QAS\DATA*.*

Description Performs an integrity check on selected Experian QAS data files.
Uses a CRC (Cyclic Redundancy Check) to verify that the contents
of the data files are not corrupt. Can be used to check for problems
with the data or file corruption.
The buttons on the dialog once the application has been launched
can be used to perform the following actions:

Add... Add an Experian QAS data file to the list.

Remove... Remove the selected file from the list.

Check File Check the currently-selected file.

Check All Check all the files in the list.

245

	Introduction
	Conventions
	Accompanying Documentation
	Data Guide
	API Manual
	Getting Started Guide
	Help Files
	Client/Server Documentation
	Upgrade Guide

	Licences
	Expiry Warnings
	Evaluations
	Street Level Validation

	Installing QAS Pro API
	System Requirements
	Windows Installation
	UNIX Installation
	Installing And Updating Data
	Windows
	UNIX

	Data Updates
	Getting Started With QAS Pro API
	Which Version Of The API Should I Use?

	Sample Code
	Testing Your Primary API Installation
	Searching With A Test Harness

	Testing Your UI API Installation
	Running The Test Harness
	A Typedown Search
	A Single Line Search
	A Key Search

	Searching With QAS Pro
	Which Search Method Should I Use?
	Typedown Searching
	Searching For A Residential Address
	Searching For An Organisation Address
	Searching For A PO Box Address
	Typedown Troubleshooting

	Single Line Searching
	Wildcard Searching
	Searching With Partial Addresses
	Identifying Address Elements

	Key Searching
	Searching On A Utility Meter Number
	Searching For A UPRN

	Alias Matching
	United Kingdom
	Australia
	New Zealand

	Retrieving DataPlus Information
	Retrieving Multiple DataPlus Values
	Barcoding

	QAS Pro User Interface
	Menu Bar
	Toolbar
	Search Area
	Results Area
	Partial Address Bar
	Status Bar
	Select Button
	Picklist of Returned Addresses
	Picklist Symbols
	Typedown Search Results
	Single Line Search Results
	Selecting a Picklist Item
	Order of Picklist Items
	Displayed Postcodes
	Returning An Unrecognised Address
	Address Edit Screen
	Setting QAS Pro Options
	Selecting A Search Method
	Setting The Search Options
	Selecting A Dataset
	Selecting An Address Layout

	QAS Healthcoder
	Using QAS Healthcoder
	AddressBook
	+<search prefix>:<data file name>
	AddressBookData=<file location>

	Data Types
	Function Return Values
	Parameters (Input)
	Parameters (Output)
	Calling Functions From Languages Other Than C
	NULL Termination
	Passing By Value Or By Reference
	Returned Strings

	Example Of Data Types

	Primary API Reference
	Pseudocode Example Of QAS Pro API
	Main Function
	Display Error Function
	User Action Function
	Display Results Function
	Select Result Function
	Return Address Function

	Handling Errors
	API Instances
	Flags Returned
	Automatic Stepping And Formatting
	Asynchronous Searching
	API Function Reference
	General Error Scenarios (All Functions)
	QA_CancelSearch
	QA_Close
	QA_EndSearch
	QA_ErrorMessage
	QA_FormatExample
	QA_FormatResult
	QA_GenerateSystemInfo
	QA_GetActiveData
	QA_GetActiveLayout
	QA_GetData
	QA_GetDataCount
	QA_GetEngine
	QA_GetEngineOption
	QA_GetEngineStatus
	QA_GetExampleCount
	QA_GetFormattedLine
	QA_GetLayout
	QA_GetLayoutCount
	QA_GetLicensingCount
	QA_GetLicensingDetail
	QA_GetPrompt
	QA_GetPromptStatus
	QA_GetResult
	QA_GetResultDetail
	QA_GetSearchStatus
	QA_GetSearchStatusDetail
	QA_GetSystemInfo
	QA_Open
	QA_Search
	QA_SetActiveData
	QA_SetActiveLayout
	QA_SetEngine
	QA_SetEngineOption
	QA_Shutdown
	QA_StepIn
	QA_StepOut

	User Interface API Reference
	Handling Client/Server Errors
	Pseudocode Example Of QAS Pro API
	API Function Reference
	QAProWV_UICountryCount
	QAProWV_UIGetActiveCountry
	QAProWV_UIGetActiveLayout
	QAProWV_UIGetCountry
	QAProWV_UIGetFlags
	QAProWV_UIGetLayout
	QAProWV_UIGetResult
	QAProWV_UIGetResultDetail
	QAProWV_UILayoutCount
	QAProWV_UILayoutLineElements
	QAProWV_UIResultCount
	QAProWV_UISearch
	QAProWV_UISetActiveCountry
	QAProWV_UISetActiveLayout
	QAProWV_UISetFlags
	QAProWV_UIShutdown
	QAProWV_UIStartup

	Low-Level System Functions
	QAErrorMessage
	QAErrorLevel
	QASystemInfo

	API Configuration
	Overview
	Format Of A Configuration File
	The Configuration Process

	Dataset Installation Settings
	InstalledData
	DataMappings

	Warning Settings
	NotifyDataWarning
	NotifyLicenceWarning

	Output Address Format Settings
	AddressLineCount
	AddressLineN
	CapitaliseItem
	AbbreviateItem
	SeparateElements
	ElementSeparator
	ElementExtras
	TerminateLines
	LineTerminator
	ExcludeItem
	FlattenDiacritics
	CDFVariation
	Comment
	MultiValueDPSeparator

	Error Logging Settings
	LogFile
	LogErrors

	Search Options And Results Settings
	EngineTimeout
	SLMaxMatches
	ShowAllThreshold
	UPIThreshold
	EngineIntensity
	MultiElementLabels
	ForceAccept
	OemCharacterSet

	Informational Prompt Settings
	NoMatchesMessage

	Other INI Keywords

	Error Code Listing
	Utilities
	Data Checker

